3 research outputs found
The experiment that came from the cold: results from the recovered REXUS12 Suaineadh spinning web experiment
The Suaineadh experiment had the purpose to deploy a 2m x 2m web in milli gravity conditions by using the centrifugal forces acting on corner sections of a web that is spinning around a central hub. Continuous exploration of our solar system and beyond requires ever larger structures in space. But the biggest problem nowadays is the transport of these structures into space due to launch vehicle payload volume constrains. By making the space structures deployable with minimum storage properties, this constrain may be bypassed. Deployable concepts range from inflatables, foldables, electrostatic to spinning web deployment. The advantage of the web deployment is the very low storage volume and the simple deployment mechanism. These webs can act as lightweight platforms for the construction of large structures in space without the huge expense of launching heavy structures from Earth. The Suaineadh experiment was launched onboard the sounding rocket REXUS12 in March 2012. After achieving the required altidue, the Suaineadh experiment was ejected from the rocket in order to be fully free flying. A specially designed spinning wheel in the ejected section was then used to spin up the experiment until the required rate is achieved for web deployment to commence. Unfortunately during re-entry, the probe was lost and also a recovery mission in August 2012 was only able to find minor components of the experiment. After 18 month, in September 2013, the experiment was found in the wilderness of Northern Sweden. In the following months all data from the experiment could be recovered. The images and accelerometer data that has been analysed showed the deployment of the web and a very interesting three dimensional behaviour that differs greatly from on ground two dimensional prototype tests. This paper will give an overview on the recovered data and it will present the analysed results of the Suaineadh spinning web experiment
The experiment that came from the cold: results from the recovered REXUS12 Suaineadh spinning web experiment
The Suaineadh experiment had the purpose to deploy a 2m x 2m web in milli gravity conditions by using the centrifugal forces acting on corner sections of a web that is spinning around a central hub. Continuous exploration of our solar system and beyond requires ever larger structures in space. But the biggest problem nowadays is the transport of these structures into space due to launch vehicle payload volume constrains. By making the space structures deployable with minimum storage properties, this constrain may be bypassed. Deployable concepts range from inflatables, foldables, electrostatic to spinning web deployment. The advantage of the web deployment is the very low storage volume and the simple deployment mechanism. These webs can act as lightweight platforms for the construction of large structures in space without the huge expense of launching heavy structures from Earth. The Suaineadh experiment was launched onboard the sounding rocket REXUS12 in March 2012. After achieving the required altidue, the Suaineadh experiment was ejected from the rocket in order to be fully free flying. A specially designed spinning wheel in the ejected section was then used to spin up the experiment until the required rate is achieved for web deployment to commence. Unfortunately during re-entry, the probe was lost and also a recovery mission in August 2012 was only able to find minor components of the experiment. After 18 month, in September 2013, the experiment was found in the wilderness of Northern Sweden. In the following months all data from the experiment could be recovered. The images and accelerometer data that has been analysed showed the deployment of the web and a very interesting three dimensional behaviour that differs greatly from on ground two dimensional prototype tests. This paper will give an overview on the recovered data and it will present the analysed results of the Suaineadh spinning web experiment
Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries
Background
Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks.
Methods
The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned.
Results
A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31).
Conclusion
Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)