32 research outputs found

    Improving intermittent waste heat recovery with ORC systems by integrating thermal energy storage

    Get PDF
    https://scholarlyworks.lvhn.org/progress_notes/1201/thumbnail.jp

    Case studies of thermally driven heat pump assisted drying

    Get PDF
    In general, most heat losses in industrial dryers arise due to the discharge of humid air. By using heat pump drying (HPD) systems, heat from the exhaust humid air can be recovered, thus improving the energy efficiency substantially. In this study, the performance of thermally driven HP integration in an animal food and a blood dryer were examined. Computer simulation models of the original high temperature dryers and the proposed system with HP integration and auxiliary heating were developed. It is found that, when using a gas engine, the maximum energy cost saving is limited by the temperature of the coolant fluid. The maximum energy cost saving when using a gas turbine is a bit higher, however at a much higher operating temperature

    Waste heat recovery via organic rankine cycle: results of a era-SME technology transfer project

    Get PDF
    The main goal of the EraSME project “Waste heat recovery via an Organic Rankine Cycle”, completed by partners Howest (Belgium), Ghent University (Belgium) and University of Applied Sciences Stuttgart (Germany) between 1 January 2010 and 31 December 2012, was to find an entrance in Flanders for the Organic Rankine Cycle (ORC) technology in applications with sufficient amounts of waste heat at high enough temperatures. The project was preceded by a similar study that focused on renewable energy sources. Several tools were developed to aid in the viability assessment, the selection, and the sizing of ORC installations. With these methods, a fast determination of feasibility is possible. The outcome is based on the size, nature and temperature of the waste heat stream as well as the electricity price. An estimate can be given of the net power output, the investment costs and the economic feasibility. The tool is linked to a database of ORC manufacturer specifications. Another objective of the project was to keep track of the evolution in ORC market supply, both commercial and precommercial. We also looked beyond the product line of the main manufacturers. Some ORCs are developed for specific applications. ORC technology was benchmarked against alternatives for waste heat recovery, such as: steam turbines, heat pumps and absorption cooling. ORC in or as a combined heat and power (CHP) system was also examined. A laboratory test unit of 10kWe nominal power was installed during the project, which is now used in further research on dynamic behavior and control. It is still the only ORC demonstration unit in Flanders and has been very instructive in introducing representatives from industry, researchers and students to the technology. A considerable part of the project execution consisted of case studies in response to industrial requests from several sectors. Detailed and concrete feasibility studies allowed us to define the current application area of waste heat recovery ORC in a better way. A knowledge center for waste heat recovery (www.wasteheat.eu) was initiated to consolidate the know-how and to advise potential users
    corecore