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ABSTRACT 
 In general, most heat losses in industrial dryers arise due to the discharge of humid air. By using heat 
pump drying (HPD) systems, heat from the exhaust humid air can be recovered, thus improving the 
energy efficiency substantially. In this study, the performance of thermally driven HP integration in an 
animal food and a blood dryer were examined. Computer simulation models of the original high 
temperature dryers and the proposed system with HP integration and auxiliary heating were developed. It 
is found that, when using a gas engine, the maximum energy cost saving is limited by the temperature of 
the coolant fluid. The maximum energy cost saving when using a gas turbine is a bit higher, however at a 
much higher operating temperature. 
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INTRODUCTION 
 Drying is one of the most energy intensive processes for many industrial sectors. Generally, heat losses in 
industrial dryers are mostly due to the discharge of moist air and conduction through the drying chamber 
walls [Minea, 2015]. By using HPD systems, which have the ability to recover partially this heat loss, up 
to 50% or more primary energy used can be saved [Minea, 2015]. In order to evaluate the performance of 
the HPD, various studies, from numerical simulation to experimental tests, have been carried out and 
published. For example, Minea, 2012, carried out experimental studies on wood drying and compared the 
performance of HPD with the conventional dryer. It was shown that the HP dryer saves up to 48% of the 
total equivalent (electrical and fossil) energy use. A batch-type HP dryer for medicinal plants was 
investigated by Ziegler et al., 2013. It is found that the energy efficiency of the HPD system operated in 
partially open mode is higher in comparison with a closed cycle system. While comparing with a 
conventional dryer, the energy efficiency of a partially open HPD can be higher or lower dependent on 
the ambient temperature. In the study of Prasertsan et al., 1996, 1997a, b, two open and two partially closed 
HPD systems using R22 as working fluid were investigated. The influences of the ambient air conditions, 
the recirculation air ratio (RAR) as well as bypass air ratio (BAR) on the performance of these systems 
were determined. Dryers using complex HP systems such as two-stage evaporator systems [Hawlader et 
al., 2001; Chua et al., 2005] and two cycle HPs [Lee et al., 2010] were also investigated.  
 
However, when comparing to a conventional dryer using primary energy as the heat source, the operating 
energy cost of an electrical driven HP dryer significantly depends on the ratio of electricity to gas price. 
To avoid this dependence, employing a thermally driven HP such as a gas engine/turbine driven 
compressor HP could be a good solution. The performance of these HPD systems integrated in two drying 
processes is investigated and presented in this study.  
  
SIMULATIONS 
 Models of the original high temperature dryers and of the proposed system with HP integration and 
auxiliary heating are implemented in Engineering Equation Solver (EES). 
 
Simulation of the original dryers  
The layouts of the two original dryers are represented in figure 1. In these drying processes, the wet 
product enters into the upper part and exits from the bottom part of the drying chamber. However, there 
are some differences in the air path of the two drying processes. In the animal food drying process, the 
fresh air is directly heated up to 140oC by a heater before it comes to the drying chamber and the exhaust 
air temperature exits the cyclone at around 50oC. Meanwhile, in the blood drying process, a water/air heat 
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exchanger is used to recover heat from the exhaust air after the cyclone and pre-heats the fresh air to 
around 50oC before it is heated up to the required temperature of 180oC by the heater. The temperature of 
the exhaust air after the water/air heat exchanger is around 50oC. 
 

 Figure 1: Layouts of the original animal food dryer (left) and blood dryer (right) 
 The power use of the original dryer is the heat rate needed to raise the temperature of the incoming air to 
the required temperature and is defined as:   

[1] 
 where hheated air is the specific enthalpy of the drying air after the heater. 

 hincoming air is the specific enthalpy of the fresh air for the animal food case and of the preheated air 
for the blood drying case. 
 
Simulation of a dryer with a gas engine/turbine driven HP integrated   

 Figure 2: Layouts of a dryer with a gas engine driven compressor HP integrated in the animal food 
dryer (left) and with a gas turbine driven compressor HP integrated in the blood dryer (right)  The HP system investigated in this research is a R245fa HP with a subcooler which is proven as the best 

performing system for these cases [Tran, 2015a,b]. In the HPD systems as shown in Figure 2, the 
evaporator is employed to recover heat from the exhaust air while the subcooler and the condenser are used to preheat the drying air. For the HP system using a gas engine to drive the compressor (figure 2 – 
left), the available heat from the coolant fluid and exhaust gases of the gas engine are also used to further 
heat drying air before it enters the auxiliary heater. Therefore, the performance of a gas engine driven 
compressor HP is represented by a combined heat and power efficiency (ηCHP) and calculated as the ratio 
of the useful heat used to heat drying air to the energy consumption of the gas engine:       [2] 
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where COP, ηmech, ηthermal,coolant fluid and ηthermal,exhaust gases are: 
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The operating mechanism of a gas turbine driven compressor HP is similar to a gas engine driven 
compressor HP (figure 2 - right). However, in this case, the only waste heat stream is exhaust gas of the 
gas turbine. Thus, the ηCHP of a gas turbine driven compressor HP is defined as: 

 
  [7] 

 
The total power consumption of a HPD system is:   

 
[8] 

 
where hpre-heated air is the enthalpy of the drying air preheated by the exhaust gas of the gas engine or gas 
turbine. 
 
Economic benefit calculation  
In this study, the economic benefit of a HPD is investigated based only on the operating energy cost of 
the drying system and is expressed by the relative energy cost (REC), which is defined as the ratio of the 
energy cost of the HPD system to the energy cost of the original dryer: 
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The fixed costs (investment, installation) of the HPD are not considered. For the original dryer, the fuel to 
heat conversion ratio of the air heater is assumed 100%. 
 
Assumptions and inputs 
 
The calculations in this paper are based on the assumptions that the refrigerant flow rate is constant and 
heat and pressure losses are neglected. For the gas engine, the mechanical and thermal efficiencies at part 
load operation are the same as at full load operation. These values are the efficiencies of the MAN E0834-
E312 (for the animal food drying case) and MAN E0836-E302 (for the blood drying case) gas engines 
operating at speed of 1500rpm. It is also assumed that the temperature of the coolant fluid is 90oC and the 
minimum temperature difference of the coolant fluid/air heat exchanger is 10oC. This means that the 
maximum temperature of the drying air (heated by the coolant fluid/air heat exchanger) that can be 
reached is 80oC (Ta3, figure 3). For the gas turbine, the mechanical efficiency is also assumed constant 
while the mass flow rate of the exhaust gas is proportional to the turbine load. The parameters of the gas 
turbine are obtained from the Capstone C65 and Capstone C200LP gas turbines for the animal food 
drying and the blood drying systems, respectively. The input parameters of the calculations are presented 
in Table 1. 
 
PERFORMANCE ANALYSIS BY SIMULATION 
 
Generally, we would like to recover as much heat as possible from the exhaust air to reduce heat losses. 
However, more recovered heat means that the HP will operate at a lower evaporation temperature and 
thus pressure. Moreover, as mentioned above, the heat recovered from the exhaust air is used to preheat 
the ambient air. Thus, the more heat recovered from the exhaust air, the higher the temperature of the  
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Table 1. The inputs for simulating calculation 
Parameter Unit Value 

Animal food drying Blood drying 
Ambient air temperature oC 20 

Ambient air relative humidity % 60 
Isentropic efficiency of the compressor - 0.7 

Pinch point of the evaporator, condenser oC 8 
Pinch point of the subcooler oC 15 
Superheating temperature oC 5 

Volumetric flow rate of the hot air m3/h 12000 70000 
Volumetric flow rate of the drying air flows 

to the bottom of the drying chamber. m3/h 5000 8000 
Volumetric flow rate of the drying air flows 

to the bottom of the cylinder. m3/h - 2000 
Parameters of the gas engine 

Gas engine power output (full load) kW 47 75 
ηthermal, coolant fluid - 0.302 0.308 
ηthermal, exhaust gases - 0.186 0.225 

ηmech - 0.364 0.367 
Parameters of the gas turbine 

Gas turbine power output (full load) kW 65 190 
ηmech - 0.29 0.31 

Exhaust gas temperature oC 309 280 
Exhaust gas flow (full load) kg/s 0.49 1.3 

 preheated air. Consequently, an increase in temperature difference between the condensation and 
evaporation is created. This causes a decrease of the HP system efficiency. Hence, there is a trade-off 
between the amount of heat recovered and the HP system efficiency.  
 
Gas engine driven compressor HPD systems 

 Figure 3: REC, Ta3, Ta4 and ηCHP as a function of Ta2 for the system using a gas engine to drive the 
compressor in the animal food drying case (left) and the blood drying case (right).  
Figure 3 presents the REC and ηCHP of the drying system using a gas engine to drive the compressor as a 
function of the air temperature after the condenser (Ta2) for both drying cases. The temperatures of the air 
after the coolant liquid/air heat exchanger (Ta3) and after the exhaust gases/air heat exchanger (Ta4) are 
indicated as well. It can be seen that, for both cases, the energy cost of the systems decreases almost 
linearly by increasing Ta2 until it reaches the optimum value Topt which depends on the maximum 
temperature (Ta3max) of the drying air at the exit of the coolant heat exchanger or, in other words, the 
coolant fluid temperature and the minimum temperature difference of the coolant heat exchanger. Indeed, 
when Ta2 is lower than Topt and the corresponding Ta3 is lower than this Ta3max, all the heat available from the coolant fluid can be used to heat the drying air, therefore the energy cost decreases when Ta2 increases. Once Ta2 reaches its optimum value and Ta3 reaches Ta3max, the energy used by the gas engine 
increases with increasing Ta2 in order to supply enough mechanical work to the compressor, whereas the useful heat from the coolant fluid used to heat the drying air decreases. As a result, ηCHP significantly 



decreases and the energy cost rises. In the animal food drying case, the minimum relative cost is about 
67.2% at the Ta2 and ηCHP of 72oC and 2.6, respectively. Meanwhile, these values in the blood drying case 
are 86.5%, 76oC and 2.1, respectively. 
 
Generally, the exhaust gas temperature is much higher than the coolant fluid temperature and therefore 
the optimum operating temperature does not depend on the exhaust gases temperature. However, the percentage of heat recovered from exhaust gases affects the performance of the gas engine driven HP 
according to equation (2). 
 
Gas turbine driven compressor HPD systems 

 Figure 4: REC, Ta3 and ηCHP as a function of Ta2 for the system using a gas turbine to drive the 
compressor in the animal food drying case (left) and the blood drying case (right). 
 The dependence on Ta2 of the REC, temperature of the air after the exhaust gases/air heat exchanger (Ta3) and ηCHP of the HP system using a gas turbine to drive the compressor is shown in figure 4. Since this HP 
system only has one waste heat stream, being exhaust gases, and its temperature is much higher than the 
Ta2, the minimum REC is not limited by the waste heat temperature as was the case in the gas engine driven compressor HPD system. In this case, there still is an optimum operating condition at which the 
REC reaches the minimum value, however this optimum operating condition depends on all of the 
parameters (Table 1) used for the calculation. Thus, it differs for each drying system. The minimum RECs 
are 66.2% and 82.2% for animal food drying and blood drying, respectively, which are little smaller in 
comparison with the gas engine case. However, the optimums Ta2 are much higher being 101oC and 
111oC, respectively.  
 
One should also notice that for the animal food drying case, the auxiliary heater could be eliminated if the 
gas turbine driven HP operates at Ta2 and Ta3 of 112oC and 140oC, respectively.     
Comparison of the HPD system performance between two drying cases  In both drying systems, the exhaust air is the heat source for the HP system and its temperature is 50oC. 
However, the exhaust air relative humidity of the animal food drying case (64%) is higher than that of the 
blood drying system (50%). In addition, the incoming air temperature of the latter system is already 
preheated to 50oC, thus it decreases the subcooling. Therefore, the HP COP of the animal food drying 
system is much higher than that of the blood drying system. As a result, the ηCHP of the animal food 
drying system is higher than the blood drying system (Figure 3 and 4) even the mechanical and thermal 
efficiencies of the gas engine/turbine of the former system are a bit lower. 
 
About the economic benefits, we can see that the REC of the blood drying case is much higher than that of the animal food drying case. Besides having a lower ηCHP, it is also because the drying temperature of 
the former (180oC) is higher, or in other words, the proportion of the heat supplied by the HP system to 
the heat supplied by the auxiliary heater is smaller.    
CONCLUSION  This paper presents the results of two case studies about the performance of thermally driven HP 
integration in an animal food dryer and a blood dryer. In order to study the performance of HP dryers, 



computer simulation models of the original high temperature dryer and the proposed system with HP 
integration and auxiliary heating are developed. The results showed that, when using a gas engine driven 
compressor HP, in which recovered heat from the coolant fluid and exhaust gas of the gas engine is also 
used to heat drying air, the maximum energy cost saving is limited by the temperature of the coolant 
fluid. This limitation can be eliminated by using a gas turbine driven compressor HP since a gas turbine 
only has one waste heat stream being exhaust gases. In addition, the air temperature heated by this system 
is also higher in comparison with the gas engine driven compressor HP.  
 
NOMENCLATURE 
 COP  coefficient of performance 
CHP dryer  total energy cost of the dryer with a HP integrated [Euro/year] 
Coriginal dryer energy cost of the original dryer [Euro/year] 
mair  mass flow rate of the drying air [kgs-1] 
Qcond  heat release rate at the condenser [kW] 
Qcoolant  heat release rate at the coolant heat exchanger [kW] 
Qevap  heat delivery rate to the evaporator [kW] 
Qexhaust  heat release rate at the gas engine exhaust air heat exchanger [kW] 
Qfuel  power consumption of the gas engine [kW] 
QHPD  power consumption of the dryer integrated HP [kW] 
Qoriginal dryer power consumption of the original dryer [kW] 
Qsubcooler  heat release rate at the subcooler [kW] 
Wcomp  power consumption of the compressor [kW] 
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