84 research outputs found
Drop Traffic in Microfluidic Ladder Networks with Fore-Aft Structural Asymmetry
We investigate the dynamics of pairs of drops in microfluidic ladder networks
with slanted bypasses, which break the fore-aft structural symmetry. Our
analytical results indicate that unlike symmetric ladder networks, structural
asymmetry introduced by a single slanted bypass can be used to modulate the
relative drop spacing, enabling them to contract, synchronize, expand, or even
flip at the ladder exit. Our experiments confirm all these behaviors predicted
by theory. Numerical analysis further shows that while ladder networks
containing several identical bypasses are limited to nearly linear
transformation of input delay between drops, mixed combination of bypasses can
cause significant non-linear transformation enabling coding and decoding of
input delays.Comment: 4 pages, 5 figure
Muscle strength deficiency and mitochondrial dysfunction in a muscular dystrophy model of C. elegans and its functional response to drugs
Muscle strength is a key clinical parameter used to monitor the progression of human muscular dystrophies, including Duchenne and Becker muscular dystrophies. Although Caenorhabditis elegans is an established genetic model for studying the mechanisms and treatments of muscular dystrophies, analogous strength-based measurements in this disease model are lacking. Here, we describe the first demonstration of the direct measurement of muscular strength in dystrophin-deficient C. elegans mutants using a micropillar-based force measurement system called NemaFlex. We show that dys-1(eg33) mutants, but not dys-1(cx18) mutants, are significantly weaker than their wild-type counterparts in early adulthood, cannot thrash in liquid at wild-type rates, display mitochondrial network fragmentation in the body wall muscles, and have an abnormally high baseline mitochondrial respiration. Furthermore, treatment with prednisone, the standard treatment for muscular dystrophy in humans, and melatonin both improve muscular strength, thrashing rate and mitochondrial network integrity in dys-1(eg33), and prednisone treatment also returns baseline respiration to normal levels. Thus, our results demonstrate that the dys-1(eg33) strain is more clinically relevant than dys-1(cx18) for muscular dystrophy studies in C. elegans. This finding, in combination with the novel NemaFlex platform, can be used as an efficient workflow for identifying candidate compounds that can improve strength in the C. elegans muscular dystrophy model. Our study also lays the foundation for further probing of the mechanism of muscle function loss in dystrophin-deficient C. elegans, leading to knowledge translatable to human muscular dystrophy
Hydrodynamic mobility of confined polymeric particles, vesicles, and cancer cells in a square microchannel
The transport of deformable objects, including polymer particles, vesicles, and cells, has been a subject of interest for several decades where the majority of experimental and theoretical studies have been focused on circular tubes. Due to advances in microfluidics, there is a need to study the transport of individual deformable particles in rectangular microchannels where corner flows can be important. In this study, we report measurements of hydrodynamic mobility of confined polymeric particles, vesicles, and cancer cells in a linear microchannel with a square cross-section. Our operating conditions are such that the mobility is measured as a function of geometric confinement over the range 0.3 < λ < 1.5 and at specified particle Reynolds numbers that are within 0.1 < Rep < 2.5. The experimental mobility data of each of these systems is compared with the circular-tube theory of Hestroni, Haber, and Wacholder [J. Fluid Mech. 41, 689–705 (1970)] with modifications made for a square cross-section. For polymeric particles, we find that the mobility data agrees well over a large confinement range with the theory but under predicts for vesicles. The mobility of vesicles is higher in a square channel than in a circular tube, and does not depend significantly on membrane mechanical properties. The mobility of cancer cells is in good agreement with the theory up to λ ≈ 0.8, after which it deviates. Comparison of the mobility data of the three systems reveals that cancer cells have higher mobility than rigid particles but lower than vesicles, suggesting that the cell membrane frictional properties are in between a solid-like interface and a fluid bilayer. We explain further the differences in the mobility of the three systems by considering their shape deformation and surface flow on the interface. The results of this study may find potential applications in drug delivery and biomedical diagnostics
- …