32 research outputs found
CD34 marks angiogenic tip cells in human vascular endothelial cell cultures
The functional shift of quiescent endothelial cells into tip cells that migrate and stalk cells that proliferate is a key event during sprouting angiogenesis. We previously showed that the sialomucin CD34 is expressed in a small subset of cultured endothelial cells and that these cells extend filopodia: a hallmark of tip cells in vivo. In the present study, we characterized endothelial cells expressing CD34 in endothelial monolayers in vitro. We found that CD34-positive human umbilical vein endothelial cells show low proliferation activity and increased mRNA expression of all known tip cell markers, as compared to CD34-negative cells. Genome-wide mRNA profiling analysis of CD34-positive endothelial cells demonstrated enrichment for biological functions related to angiogenesis and migration, whereas CD34-negative cells were enriched for functions related to proliferation. In addition, we found an increase or decrease of CD34-positive cells in vitro upon exposure to stimuli that enhance or limit the number of tip cells in vivo, respectively. Our findings suggest cells with virtually all known properties of tip cells are present in vascular endothelial cell cultures and that they can be isolated based on expression of CD34. This novel strategy may open alternative avenues for future studies of molecular processes and functions in tip cells in angiogenesis
Food web persistence is enhanced by non-trophic interactions.
The strength of interspecific interactions is often proposed to affect food web stability, with weaker interactions increasing the persistence of species, and food webs as a whole. However, the mechanisms that modify interaction strengths, and their effects on food web persistence are not fully understood. Using food webs containing different combinations of predator, prey, and nonprey species, we investigated how predation risk of susceptible prey is affected by the presence of species not directly trophically linked to either predators or prey. We predicted that indirect alterations to the strength of trophic interactions translate to changes in persistence time of extinction-prone species. We assembled interaction webs of protist consumers and turbellarian predators with eight different combinations of prey, predators and nonprey species, and recorded abundances for over 130 prey generations. Persistence of predation-susceptible species was increased by the presence of nonprey. Furthermore, multiple nonprey species acted synergistically to increase prey persistence, such that persistence was greater than would be predicted from the dynamics of simpler food webs. We also found evidence suggesting increased food web complexity may weaken interspecific competition, increasing persistence of poorer competitors. Our results demonstrate that persistence times in complex food webs cannot be predicted from the dynamics of simplified systems, and that species not directly involved in consumptive interactions likely play key roles in maintaining persistence. Global species diversity is currently declining at an unprecedented rate and our findings reveal that concurrent loss of species that modify trophic interactions may have unpredictable consequences for food web stability
Inducible defenses and the dynamics of planktonic food chains
Contains fulltext :
30214.pdf (publisher's version ) (Open Access)Radboud Universiteit Nijmegen, 19 oktober 2007Promotor : Donk, E. van
Co-promotores : Mooij, W.M., Vos, M.144 p
Inducible defenses and rotifer food chain dynamics
Theoretical studies have predicted that inducible defenses affect food chain dynamics and persistence. Here we review and evaluate laboratory experiments that tested hypotheses developed from these theoretical studies. This review specifically focuses on the effects of inducible defenses in phytoplankton-rotifer food chain dynamics. First, we describe the occurrence of colony formation within different strains of green algae (Scenedesmaceae) in response to infochemicals released during grazing by the herbivorous rotifer Brachionus calyciflorus. Then we examined the effects of inducible defenses on the population dynamics of this planktonic system in which algal strains that differed in their defense strategies were used. Simple food chains were composed of green algae (Scenedesmaceae), herbivorous rotifers (Brachionus calyciflorus) and carnivorous rotifers (Asplanchna brightwellii). In this system B. calyciflorus exhibits an inducible defense against predation by developing long postero-lateral spines. Experimental studies showed that inducible defenses, as opposed to their absence, could prevent high-amplitude population fluctuations. We discuss the dual effects of induced defenses on extinction probabilities and consider the fit of a theoretical model to experimental data to understand the mechanisms that underlie the observed dynamics.
Inducible defences prevent strong population fluctuations in bi- and tritrophic food chains
Recent theoretical work (Vos et al. 2004) predicts that inducible defences prevent strong population fluctuations under high levels of nutrient enrichment. Here we evaluate this model prediction and show that inducible defences in algae stabilize the dynamics of experimentally assembled bi- and tritrophic planktonic food chains. At high phosphorus levels, we observed strong population fluctuations in all food chains with undefended algae. These fluctuations did not occur when algae had inducible defences. At low phosphorus levels, we observed deterministic consumer extinctions, as predicted by stoichiometric theory. Our study thus shows that both biotically and abiotically induced changes in algal food quality affect the stability and persistence of planktonic food chains. [KEYWORDS: Coexistence ; extinctions ; food quality ; induced defences ; paradox of energy enrichment ; paradox of enrichment ; population cycles ; predatorprey ; interactions ; stoichiometry]
Linking herbivore-induced defenses to population dynamics
1. Theoretical studies have shown that inducible defences have the potential to affect population stability and persistence in bi- and tritrophic food chains. Experimental studies on such effects of prey defence strategies on the dynamics of predatorāprey systems are still rare. We performed replicated population dynamics experiments using the herbivorous rotifer Brachionus calyciflorus and four strains of closely related algae that show different defence responses to this herbivore. 2. We observed herbivore populations to fluctuate at a higher frequency when feeding on small undefended algae. During these fluctuations minimum rotifer densities remained sufficiently high to ensure population persistence in all the replicates. The initial growth of rotifer populations in this treatment coincided with a sharp drop in algal density. Such a suppression of algae by herbivores was not observed in the other treatments, where algae were larger due to induced or permanent defences. I 3. A variety of alternative mechanisms could explain differential herbivore persistence in the different defence treatments. Our analysis showed the density and fraction of highly edible algal particles to better explain herbivore persistence and extinctions than total algal density, the fraction of highly inedible food particles or the accumulation of herbivore waste products or autotoxins. 4. We argue that the rotifers require a minimum fraction and density of edible food particles for maintenance and reproduction. We conjecture that induced defences in algae may thus favour larger zooplankton species such as Daphnia spp. that are less sensitive to shifts in their food size spectrum, relative to smaller zooplankton species, such as rotifers and in this way contributes to the structuring of planktonic communities. [KEYWORDS: consumerāresource interactions ; inducible defences ; phenotypic plasticity ; Scenedesmus ; trait-mediated interactions.]
Inducible defenses, competition and shared predation in planktonic food chains
Ecologists have long debated the role of predation in mediating the coexistence of prey species. Theory has mainly taken a bitrophic perspective that excludes the effects of inducible defenses at different trophic levels. However, inducible defenses could either limit or enhance the effects of predation on coexistence, by means of effects on bottom-up control and population stability. Our aim was to investigate how inducible defenses at different trophic levels affect the possibilities for predator-mediated coexistence, as opposed to competitive exclusion, in replicated experimental plankton communities. In particular, we analyzed how the presence or absence of inducible defenses in algal basal prey affected the outcome of competition between an inducible defended and an undefended herbivore, in the presence or absence of a carnivore. We found the undefended herbivore to be a superior competitor in the absence of predation. This outcome was reversed in the presence of a shared carnivore: populations of the undefended herbivore then strongly declined. The extent of this population decline differed between food webs based on undefended as opposed to inducible defended algal prey. In the former the undefended herbivore became undetectable for most of the duration of the experiment. In the latter the undefended herbivore also crashed to low densities, but it could still be detected during most of the experiment. In food webs based on inducible defended algae, the carnivore failed to reach high densities and exerted weaker topādown control on the two competing herbivores. We conclude that the inducible defense in one of our two competing herbivores allowed the outcome of competition to be reversed when a shared carnivore was added. Inducible defenses in algae did not change this outcome, but they significantly delayed extinction of the undefended herbivore. Predation itself did not promote coexistence in these experimental plankton communities.