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Chapter 1 

General introduction 

Abstract 

This thesis presents an analysis of the effects of individual level 

plasticity on population dynamics and persistence. The main objective 

of the research was to investigate whether different defense strategies 

of organisms have contrasting effects on population dynamics. 

Inducible defenses were expected to stabilize population dynamics as 

opposed to constitutive defenses or the absence of defenses. This 

chapter provides a concise introduction to phenotypic plasticity in 

aquatic organisms, theory on the effects of inducible defenses in two- 

and three-level food chains and the model system of algae and 

rotifers. 

 

 
Parts of this chapter are based on the paper: Van der Stap, I., M. Vos and W.M. Mooij. 

Inducible defenses and rotifer food chain dynamics. Hydrobiologia in press. 
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Figure 1.1 The stability boundaries of bitrophic food chains without defenses (top), with 
constitutive defenses (middle), or with inducible defenses (bottom), for a range of carrying 
capacities and herbivore mortality rates. The transcritical (TC) bifurcation curve or 
existence boundary and Hopf (H) bifurcation curve or stability boundary separate areas 
with qualitatively different dynamics. Area A0: only algae exist. Grey area A1: stable 
coexistence of algae and herbivores. Area B1: algae and herbivores fluctuate (Vos et al. 
2004a). 
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Phenotypic plasticity 

Inducible defenses are phenotypic changes in prey organisms in response to cues 

that indicate the presence of a predator. They aim at reducing the loss rates in 

subsequent attack by these predators. They are used by many organisms to adjust 

their defense level to the current level of predation. In aquatic ecosystems 

inducible defenses have been found in a wide range of different organisms among 

which are algae, cyanobacteria, macrophytes ciliates, bryozoans, rotifers, 

gastropods, insect larvae, amphibians and vertebrate animals (see reviews by Havel 

1987, Larsson and Dodson 1993, Wicklow 1997, Snell 1998, Werner and Peacor 

2003, Prusak et al. 2005, Van Donk 2006). They include responses in morphology, 

e.g., increased body depth in crucian carp in response to piscivorous fish such as 

pike (Brönmark and Miner 1992), in behavior, e.g., diel vertical migration in 

daphnids in response to visually hunting zooplanktivorous fish (Ringelberg 1991), 

in life history, e.g., a reduced size at first reproduction in daphnids against fish 

predation (Stibor and Lüning 1994) and in biochemistry, e.g., increased toxin 

production in cyanobacteria in response to exposure to herbivorous zooplankton 

(Jang et al. 2003). 

Theoretical background 

Inducible defenses modify the interaction strength between predator and prey and 

are as such individual-level responses that affect the functioning of populations and 

communities (e.g., Vos et al. 2002, 2004a, 2004b, Gabriel et al. 2005, Kopp and 

Gabriel 2006). Inducible defenses have the potential to either stabilize or 

destabilize predator-prey interactions (Vos et al. 2005). In an unstable system that 

shows strong population oscillations species might be lost in the troughs of 

population cycles (McCann et al. 1998, Vos et al. 2004a). Vos et al. (2004a, 

2004b) made a theoretical study of the effects of inducible defenses on bi- and 

tritrophic food chains. The classical formulation of the model, that does not take 

inducible defenses into account, results in three areas of qualitatively different 

dynamics. These areas are separated by (1) the existence boundary, indicating that 

at higher predator mortalities, the predator cannot exist and only prey are present 

(2) the stability boundary, indicating that at lower predator mortalities, predator-

prey cycles would occur with the risk of stochastic extinctions. The existence and 

stability boundaries converge at high carrying capacities. In the model with 

inducible defenses a stable coexistence of predator and prey occurs over a wide 

range of environmental conditions, even at high carrying capacities (Fig. 1.1). To 

exemplify their results the model was parameterized specifically for algae-rotifer 
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Figure 1.2 To the left: The carnivore Asplanchna is a top-predator with a length of 
approximately 1mm (Photo courtesy Wim van Egmond). To the right: Asplanchna captures 
Brachionus calyciflorus, the postero-lateral spines are expanded (Halbach 1971). 
 

food chains using parameter values from the literature and experimental data (Vos 

et al. 2004a). Theoretical predictions also showed that inducible defenses increased 

the relative importance of bottom-up control. The variation in consumption rates 

on defended and undefended prey types caused the biomass of all trophic levels to 

increase simultaneously in response to enrichment (Vos et al. 2004b).  

Model system 

The number of experimental studies on the effect of inducible defenses on 

population level effects, however, is fairly limited (but see Haukioja 1980, 

Underwood and Rausher 2000). The few that exist originate from terrestrial 

systems where inducible defenses are present in many plant species (e.g., Agrawal 

2001). In my PhD project I investigated the effects of inducible defenses on 

population dynamics in an experimental planktonic system. In this research I have 

strived for integration of both theoretical and experimental studies.  

A model system of algae (Scenedesmaceae) and rotifers (Brachionidae and 

Asplanchna) was used in a microcosm approach. The model system is ideal for 

studying the population level effects of inducible defenses given the short 

generation times of the planktonic organisms. The standard medium used for all 

cultures and experiments is COMBO medium (Kilham et al. 1998). The exact 

composition of the medium is described in the Appendix, Table A.1. We recognize 

that microcosm results may not be directly transferable to the ecosystem scale and 

can in fact yield erroneous extrapolations. On the other hand, a microcosm 

approach does increase experimental control and allows for ample replication. 

Therefore, microcosm experiments were chosen to study selected interactions 

between zooplankton and their predators and between herbivorous zooplankton 
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and the algae they graze. These included the use of batch, semi-continuous and 

continuous cultures for bi- and/or tritrophic food chains. 

Defenses in herbivorous rotifers 

Rotifers are preyed upon by a variety of invertebrate predators including protists, 

cnidarians, cladocerans, cyclopoid, calanoid and harpacticoid copepods, mysids, 

insect larvae (species of Chaorboiridae) and other rotifers (Williamson 1983). 

Williamson’s review of invertebrate predation on rotifers was updated by Brandl 

(2005) who discussed various factors determining the predation rate and impact of 

freshwater copepods on rotifers. There are numerous examples of defenses in 

rotifers including changes in morphology, e.g., spine development or elongation 

(reviewed in Gilbert 1999), a response in behavior, e.g., vertical migration (Gilbert 

and Hampton 2001) or escape reactions (Gilbert and Kirk 1988), life history 

changes e.g., high maximum growth rate (Walz 1995) and chemical deterrents 

(Felix et al. 1995, Walsh et al. 2006). One of the first reports of inducible defenses 

in rotifers was the induction of spine formation in B. calyciflorus by Asplanchna 

(Gilbert 1966, 1967). The observations by Gilbert (1967) suggested that the 

chemical signal involved in this induction of defenses is a heat-stable protein. 

More on the chemical ecology of rotifers can be found in Snell (1998). 

Juvenile B. calyciflorus and adults with no or short postero-lateral spines are 

highly susceptible to predation by Asplanchna (Fig. 1.2), but those with long 

spines are relatively protected from being captured or ingested (Gilbert 1966, 1967, 

Halbach 1971). These authors demonstrated that Asplanchna has to orient the long-

spined prey to allow the passage of the relatively large prey into the small mouth 

(Fig. 1.2). The time spent on swallowing the prey therefore increases, and ingestion 

attempts can be unsuccessful. Especially young Asplanchna have much difficulty 

ingesting spined B. calyciflorus (Gilbert 1967, 1980). The effects of prey 

vulnerability on the functional response and growth have been tested for 

Asplanchna preying on B. calyciflorus and several other rotifer species (Iyer and 

Rao 1996, Nandini et al. 2003). The capture success and ingestion of Asplanchna 

on spined B. calyciflorus is much lower than on non-spined B. calyciflorus (Iyer 

and Rao 1996). The effectiveness of Brachionus spines in preventing ingestion is 

likely to differ for different Asplanchna species. 

Response to rotifer predation in the green alga Scenedesmus 

Inducible defenses are common among herbivorous rotifers that often fall prey to 

carnivorous zooplankton, but even the prey of herbivorous zooplankton are well-

known to exhibit their own form of inducible defense. For example, species of
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Figure 1.3 Colony formation in Desmodesmus subspicatus in response to infochemicals 
(Hessen and Van Donk 1993). 

 

Scenedesmaceae, a group of green algae, show striking phenotypic plasticity when 

in the presence of the microcrustacean Daphnia magna (Hessen and Van Donk 

1993). The authors observed induced colony-formation in an algal species that is 

now called Desmodesmus subspicatus (Fig. 1.3). Shortly thereafter, induced 

colony-formation was also found in a species formerly known as Scenedesmus 

acutus (Lampert et al. 1994). In response to the presence of grazing-released 

infochemicals of this herbivore, the alga formed four- to eight celled colonies. This 

response also occurred when Scenedesmus was exposed to grazing-released 

infochemicals of the rotifers Brachionus and Keratella (Lürling and Van Donk 

1997, Van Donk et al. 1999). 

Research has shown that the induction of colony formation in unicellular algae 

can have a large effect on the feeding efficiency in B. calyciflorus. The maximum 

ingestion rate of this rotifer was lower when feeding on algae with an induced 

defense than on undefended algae (Verschoor et al. in press). This difference in 

maximum ingestion rates was due to a difference in handling time rather than a 

difference in capture efficiency. The algae that were induced or exhibited a 

constitutive defense did not only reduce the maximum ingestion rates, but also 

seemed to be assimilated less efficiently by rotifers. Growth experiments provided 

further support that larger algae caused reduced Brachionus growth (Mayeli et al. 

2004, Lürling et al. 2005).  

Scenedesmaceae and B. calyciflorus may co-occur in ponds (Halbach and 

Halbach-Keup 1974) and they may co-dominate the plankton in shallow lakes 

(Jeppesen et al. 1990). Many Brachionus and Asplanchna species co-occur in lakes 

(Oltra et al. 2001), ponds (Halbach 1972) and rivers (Lair et al. 1998, Kim and Joo 

2000). The presence of spines in Brachionus in relation to the presence and density 
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of Asplanchna has specifically been reported for various water bodies (Gilbert and 

Waage 1967, Green and Lan 1974, Gilbert 2001).  

Thesis outline  

This thesis consists of the results gathered during my four years of Ph.D research. 

Most of the studies have an experimental approach. The chapters are organized 

according to (1) increasing level of complexity, from individual plasticity to 

population dynamics and (2) increasing level of dilution rate in the culture system, 

from batch culture to continuous culture. They were written down to be separately 

published in international peer-reviewed journals and some chapters may therefore 

show considerable overlap in the materials and methods sections. Algae or 

Scenedesmaceae will also be referred to as plants, Brachionus as herbivores or 

grazers, and Asplanchna as carnivores or (top-) predators. When mentioning 

undefended organisms I usually mean organisms with a fixed undefended strategy. 

The undefended state of organisms that have inducible defenses is typically 

indicated as an organism with non-induced defenses. 

Starting at the plant level my co-workers and I investigated many strains of 

Scenedesmaceae for their response to infochemicals released by either Daphnia or 

Brachionus (see Chapter 2). The effect of defense strategy on population dynamics 

was tested in batch cultures of Scenedesmus and Brachionus. In the experiment 

extinctions of the herbivore were related to prey size (see Chapter 3). In Chapter 4, 

we further teased apart the mechanism of these extinctions using a modeling 

approach. Increasing the length of the food chain by adding a top-predator to 

examine the effects of inducible defenses in two- and three-level food chains 

resulted in Chapter 5. The results of this chapter led to the hypothesis that 

herbivore defenses may have prevented an increase in plant biomass in food chains 

with a top-predator. The hypothesis was tested in Chapter 6, using two- and three 

level food chains with an undefended herbivore. Aquatic communities are complex 

and their structure is influenced by both competition and predation. In chapter 7 we 

increase the complexity of our food chain further by having the inducible defended 

and undefended herbivores in competition. As a final test of the hypothesis that 

inducible defenses stabilize dynamics over a wide range of conditions, chemostats 

were used with various dilution rates imposing different mortality rates on all 

organisms of the system (see Chapter 8). These chapters are followed by a general 

discussion (Chapter 9). A concise overview of the main results can be found in the 

Summary.
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Chapter 2 

Inducible colony formation within the 

Scenedesmaceae: Adaptive responses to 

infochemicals from two different herbivore taxa 

Abstract 

We studied the occurrence of colony formation within 40 different 

strains of Scenedesmaceae (Chlorococcales, Chlorophyta) in response 

to grazing-released infochemicals from the herbivorous zooplankters 

Brachionus calyciflorus Pallas (Rotifera) and Daphnia magna Strauss 

(Cladocera). With the exception of two strains, all strains showed 

similar responses to both B. calyciflorus and D. magna infochemicals, 

either no response or inducible colony formation. Colony size was 

found to increase with B. calyciflorus infochemical concentration and 

could be described by a sigmoid function. The increase in colony size 

was more pronounced in the Scenedesmus species tested than in 

Desmodesmus species, which was probably due to higher threshold 

infochemical concentrations for colony induction in Desmodesmus. 

Therefore, the adaptivity of colony formation to the herbivory threat 

only holds above the threshold concentration for colony induction and 

as long as maximum colony size has not been attained. Taking this 

into account, our results suggest that inducible colony formation is a 

common adaptive response of many Scenedesmaceae to the threat of 

herbivory.  

 

 
Verschoor, A.M., I. van der Stap, N.R. Helmsing, M. Lürling and E. van Donk. 2004 

Inducible colony formation within the Scenedesmaceae: Adaptive responses to 
infochemicals from two different herbivore taxa. Journal of Phycology 40(5): 808-814. 



Chapter 2 

18 

Introduction 

Herbivory by zooplankton is among the largest selective pressures on the 

phytoplankton. Inducible defenses are a ubiquitous form of phenotypic plasticity 

that can be an important adaptive strategy in aquatic environments, especially 

when herbivory is variable (Tollrian and Harvell 1999). Inducible defenses are 

expected to be favored especially when the cues of predation are reliable and not 

fatal (Harvell 1990), and in the pelagic, information chemicals are nonfatal and 

more reliable and specific than, for example, mechanical cues (Tollrian and 

Harvell 1999). Since the seminal paper by Hessen and van Donk (1993), herbivore 

infochemical-induced defenses have been reported in various phytoplankton taxa 

(raphydophytes, Hansson 1996; cyanobacteria, Jang et al. 2003; prymnesiophytes, 

Tang 2003; and chlorophytes, Van Donk et al. 1999, Yasumoto et al. 2000).  

The family of Scenedesmaceae (Chlorococcales, Chlorophyta) is by far the 

best studied phytoplankton taxon with respect to grazer-induced colony formation. 

The recognition of phenotypic plasticity has shed new light on the taxonomy of 

this family (Trainor 1998). On the basis of morphology, it has been proposed that 

the genus Scenedesmus sensu lato should be split up into a spiny genus, 

Desmodesmus, and a spineless genus, Scenedesmus (Trainor et al. 1976). This 

division has been confirmed by molecular techniques (An et al. 1999, Van Hannen 

et al. 2002). Induced colony formation in response to Daphnia grazing has been 

found in both genera (e.g., Desmodesmus subspicatus, Hessen and Van Donk 

1993; Scenedesmus obliquus [sensu Van Hannen et al. 2000], Lampert et al. 1994). 

Coenobium formation in these species can be induced by both grazing Daphnia 

and by filtrate of grazing Daphnia, indicating that water-borne information 

chemicals are involved (Hessen and Van Donk 1993, Lampert et al. 1994). 

Although it has been hypothesized that Daphnia-induced colony formation is 

common in Scenedesmus sensu lato (Lampert et al. 1994), not all strains form 

colonies when exposed to grazing filtrate of this cladoceran (Van Donk et al. 

1999). For the most intensively investigated strain, Scenedesmus obliquus MPI 

(Table 2.1), colony formation has been shown to be inducible by various 

herbivorous zooplankton species (Van Donk et al. 1999, Lürling 2003) but not by 

carnivorous zooplankton (Lürling 2003). Induced herbivore resistance in higher 

plants is usually not very specific (Karban and Myers 1989), but it remains 

debatable whether this can be said for inducible colony formation of 

Scenedesmaceae with respect to different zooplankton taxa. Therefore, we 

investigated the distribution of infochemical-induced colony formation within 

Scenedesmus and Desmodesmus, in response to grazing-released infochemicals 
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from herbivorous zooplankton species from two different taxa: Daphnia magna 

(Cladocera) and Brachionus calyciflorus (Rotifera).  

To be adaptive, inducible colony formation should be proportional to the 

expected fitness costs of herbivory, that is, the grazing risk that the algae are 

facing. Filtrate from actively feeding Daphnia has a stronger colony-inducing 

effect than filtrate from starved conspecifics, and neither Daphnia homogenate nor 

algal homogenate separately induce a response (Lampert et al. 1994, Von Elert and 

Franck 1999). There is proportionality between grazing pressure from herbivorous 

Cladocera and colony induction in S. obliquus, regardless of the species (Lürling 

2003). If such proportionality could also be demonstrated for taxa other than 

Cladocera, induced colony formation would be a general response to herbivory, 

regardless of the herbivore involved. This would show that inducible colony 

formation is not a rare phenomenon against a few specialized herbivores but that it 

is a general adaptive response in which algae adjust their size to the risk of being 

grazed. Therefore, we investigated whether colony size of S. obliquus was 

proportional to the amount of grazing-released infochemicals from B. calyciflorus. 

Materials and methods 

Bioassays on colony formation in different strains to different herbivore 

infochemicals 

This study involves a synthesis of unpublished data from one experiment with the 

rotifer B. calyciflorus Pallas and of both published (Lürling 1999a, Lürling and 

Beekman 1999) and unpublished data from three experiments using the cladoceran 

Daphnia magna Strauss (Table 2.1). All experiments consisted of standardized 

bioassays that have been extensively used for the morphological response of 

Scenedesmaceae to zooplankton filtrate (Lampert et al. 1994, Lürling 2003).  

COMBO medium (Kilham et al. 1998) was used as standard medium. Test 

water was produced by allowing 1·105 B. calyciflorus/L or 200 D. magna/L to 

graze on at least 10 mg algal C/L, with the algae being the strain of interest. The 

zooplankton densities were considered to be sufficient to induce colony formation, 

at least for S. obliquus (Van Donk et al. 1999). After 24 h of grazing, algae and 

zooplankton were removed from the test water by filtration over a zooplankton 

filter (60 µm) and a precombusted glass fiber filter (Whatman GF/F, Maidstone, 

UK). Controls consisted of clean glass fiber-filtered medium. Test water (10% v/v) 

was added to cellulose-plug-stoppered 100 mL Erlenmeyer flasks (Omnilabo 

International BV, Breda, The Netherlands) containing medium and algal inoculate, 

making a final volume of 50 mL. Algae were inoculated in densities of 2·106 

µm3/mL and were obtained from algae in log-phase (chemostats or 
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Table 2.1 Algal strains used in the experiments, strain codes used, and results of the 
bioassays (Mann-Whitney U test). 
 

  Treatment 

  Brachionus Daphnia 

Straina Code MPV CPC MPV CPC 

Scenedesmus      

S. acuminatus (Lagerheim) Chodat UTEX 415 S1 * N.S. N.S. - 

S. acuminatus (Lagerheim) Chodat V411 S2 - - N.S. - 

S. acuminatus (Lagerheim) Chodat V412 S3 - - * - 

S. acutiformis Schröder UTEX 416 S4 N.S. N.S. - - 

S. acutus f. alterans Hortobagyi UTCC-T7 S5 * N.S. - - 

S. acutus f. alterans Hortobagyi UTCC-T10 S6b * N.S. N.S. N.S. 

S. ellipticus Corda SAG 64.81 S7 N.S. N.S. - - 

S. falcatus Chodat SAG 2.81 S8 N.S. N.S. * * 

S. obliquus (Turpin) Kützing MPI S9 * * * * 

S. obliquus (Turpin) Kützing NIVA-CHL6 S10c N.S. N.S. * * 

S. obliquus (Turpin) Kützing SAG276/1 S11c * N.S. N.S. * 

S. obliquus (Turpin) Kützing SAG276/3a S12 N.S. * * * 

S. obliquus (Turpin) Kützing UTEX 72 S13b * * * * 

S. obliquus (Turpin) Kützing UTEX 74 S14 N.S. N.S. - - 

S. obliquus (Turpin) Kützing UTEX 78 S15c - - * * 

S. obliquus (Turpin) Kützing UTEX 79 S16 N.S. N.S. - - 

S. obliquus (Turpin) Kützing UTEX 393 S17 * * - - 

S. obliquus (Turpin) Kützing UTEX 417 S18 N.S. N.S. - - 

S. obliquus (Turpin) Kützing UTEX 1450 S19c - - * * 

S. obliquus (Turpin) Kützing UTEX 2630 S20c N.S. * * * 

S. pectinatus Meyen V72 S21 - - N.S. - 

S. pectinatus Meyen V99 S22 - - N.S. - 

S. platydiscus (Smith) Chodat UTEX 2457 S23 N.S. N.S. - - 

S. producto-capitatus Schmula SAG 21.81 S24 * * - - 
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Table 2.1 continued. Algal strains used in the experiments, strain codes used, and results of 
the bioassays (Mann-Whitney U test). 
 

  Treatment 

  Brachionus Daphnia 

Straina Code MPV CPC MPV CPC 

Desmodesmus      

D. armatus (Chodat) Hegewald MPI D1 N.S. N.S. - - 

D. bicellularis Hegewald CCAP 276/14 D2 N.S. N.S. N.S. - 

D. bicellularis Hegewald UTEX LB1359 D3 N.S. * * - 

D. communis Hegewald UTEX 76 D4b - - N.S. * 

D. maximus Hegewald UTEX 614 D5 N.S. N.S. - - 

D. pannonicus (Pringsheim) Hegewald UTEX 77 D6 - - * - 

D. quadricauda (Turpin) Hegewald F11 D7b - - N.S. N.S. 

D. quadricauda (Turpin) Hegewald NIVA-CHL7 D8b -  N.S. N.S. 

D. sp. Lürling MV3 D9 - - N.S. - 

D. sp. Lürling MV5 D10 - - N.S. - 

D. sp. Lürling MV7 D11 - - N.S. - 

D. subspicatus (Chodat) Hegewald et Schmidt CCAP 276/20 D12 * N.S.  - 

D. subspicatus (Chodat) Hegewald et Schmidt NIVA-CHL55 D13 * * * N.S. 

D. subspicatus (Chodat) Hegewald et Schmidt RWTH D14 - - N.S. N.S. 

D. subspicatus (Chodat) Hegewald et Schmidt UTEX 2532 D15 - - N.S. N.S. 

D. subspicatus (Chodat) Hegewald et Schmidt UTEX 2594 D16 N.S. N.S. N.S. N.S. 
 

aCCAP, Culture Collection of Algae and Protozoa, UK; F, Saskatchewan Research Council, Canada; 
MPI, Max Planck Institute of Limnology, Germany; MV, NIOO Centre for Limnology, The 
Netherlands, NIVA, Norwegian Institute for Water Research; RWTH, University of Aachen, 
Germany; SAG, University of Göttingen, Germany; UTCC, University of Toronto Culture 
Collection, Canada; UTEX, University of Texas, USA, V, University of Plovdiv, Bulgaria. 
bD. magna bioassay data from Lürling and Beekman, 1999. 
cD. magna bioassay data from Lürling, 1999. 
N.S.: treatment not significantly larger than in control; *: treatment significantly larger than control 
(P<0.05); -: not determined. 
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semicontinuous batch cultures). Within each experiment, all bioassays ran 

simultaneously. Flasks were incubated in (at least) triplicates for 48 h in an 

incubator set at 20°C, 100 rpm, and continuous light (120 µmol photons [PAR]·m-

2·s-1, cool white fluorescent tubes). Colony sizes of controls and treatments were 

measured at t = 48h, using both microscope (counting the number of cells per 

coenobium of at least 125 algal particles per replicate) and electronic particle 

counter. Mean particle volumes (MPVs) for D. magna bioassays were measured on 

a Coulter Multisizer II (Beckman Coulter, Inc., Fullerton, CA, USA) and for B. 

calyciflorus bioassays on a CASY cell counter (Schärfe System Gmbh, Reutlingen, 

Germany).  

In Table 2.1, we give the complete list of algal strains that were used for the 

experiments, including codes that we used in the different figures. For these 

strains, we compared the relative changes in MPV and mean number of cells per 

coenobium (CPC) among 16 strains of Desmodesmus and 24 strains of 

Scenedesmus (Table 2.1). Data for the algal response after 48 h were first analyzed 

on homogeneity of variance and normality. Data were heteroscedastic, and 

transformation of the data did not prove to be sufficient for the use of parametric 

tests. Therefore, we tested for differences between treatments (test water vs. 

control) using the Mann-Whitney U test.  

Bioassay on colony formation in response to infochemical concentration 

To measure the proportionality of induced colony formation with the concentration 

of test water (containing the infochemical(s) that indicate the herbivore threat), we 

used the same bioassay as described above. Again, COMBO medium was the 

standard medium used. To produce test water, 100 B. calyciflorus/mL were 

incubated for 24 h in the dark at 20°C in a food suspension of 10 mg C S. obliquus 

MPI/L. After filtration, this test water was first diluted with clean medium to yield 

five dilutions: 1x (undiluted), 10x, 100x, 1000x, and 10,000x. Together with the 

controls (clean COMBO medium), these dilutions were again added in 10% (10 

mL v/v) to Erlenmeyer flasks containing 90 mL of medium. Furthermore, an 

additional treatment of 100 live B. calyciflorus/mL in clean medium was added. 

Treatments were inoculated with 2·106 µm3 S. obliquus/mL, and MPV was 

measured on a Coulter Multisizer II after 48 h. 

Further analysis was done for all infochemical dilutions (including controls) 

but did not include the live B. calyciflorus treatment because of unknown 

infochemical concentration and additional zooplankton effects that could obscure 

interpretation (e.g., selective grazing). First, these data were tested on homogeneity 

of variance and normality. Differences between dilutions were tested by one-way 

analysis of variance, followed by contrast analysis. The dose–response bioassay 
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was further analyzed by nonlinear regression of the general logistic dose– response 

function: 
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representing mean particle volume (MPV) as a function of infochemical dose (d), 

where MPVmin is MPV at zero dose (minimum response), MPVmax is MPV at 

maximum dose (maximum response), a is the amplitude (MPVmax - MPVmin), h is 

the dose at which the half-maximum amplitude is reached (= inflection or 

transition point), and b is a parameter describing the width of the transition zone. 

All statistical tests were done with STATISTICA for Windows, release 5.1 

(Statsoft Inc., Tulsa, OK, USA), and nonlinear regression was done with SigmaPlot 

2002 for Windows, version 8.02 (SPSS Inc., Chicago, IL, USA). 

Results and discussion 

Herbivore-specific differences 

Strains that exhibited significant inducible colony formation did this in response to 

both zooplankton species, except for S6 and S8 (Table 2.1). For the strains that 

responded significantly, the relative increase in colony size was generally greater 

in response to D. magna infochemicals than to B. calyciflorus chemicals (Fig. 2.1). 

It is not clear whether these differences are due to different chemical properties of 

the zooplankton infochemicals or to a common infochemical released in different 

concentrations. For more clarity in interpretation, the structure of the infochemicals 

involved needs to be resolved. Improved standardization by novel infochemical 

extraction methods looks promising, and by far the most progress in this area has 

been made for the Daphnia infochemical (Van Holthoon et al. 2003). Herbivore 

information chemicals are released during the grazing process, probably by 

digestive processing of the algae or by release of latent alarm substances by the 

algae (Stabell et al. 2003). Colony formation in various strains of Scenedesmaceae 

can be induced by infochemicals produced by herbivorous zooplankton that have 

been grazing on other strains of Scenedesmaceae or even other Chlorophytes 

(Lürling 1998, Van Donk et al. 1999). Also, filtrate of D. magna grazing on S. 

obliquus has been shown to induce toxin formation in the cyanobacterium 

Microcystis aeruginosa (Jang et al. 2003). This suggests that herbivore grazing, at 

least on Chlorophytes, releases non-specific infochemicals that are capable of 

inducing defenses in many phytoplankton taxa. 
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Figure 2.1 Relative increase in colony size of all Scenedesmaceae strains tested, given as 
median values of the ratios of MPV or CPC between treatments and controls, after 
exposure to test water (treatment) from Brachionus calyciflorus (BC) or Daphnia magna 
(DM). Strain codes and significance of differences are given in Table 2.1. Strain codes 
supplied with superscripted letters indicate strains for which bioassay results for D. magna 
have been published previously: aLürling and Beekman (1999), bLürling (1999).  

 

 
 
Figure 2.2 Average distribution of phenotypes (unicells, two-, four-, and eight-celled and 
other colony sizes) among different strains of Scenedesmus obliquus after 48-h exposure to 
test water of grazing Brachionus calyciflorus. Strain codes are followed by ‘‘c’’ (control) 
or ‘‘t’’ (exposed to test water). Shown are the average distributions from triplicate samples. 
Strain codes are given in Table 2.1.  
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Figure 2.3 Mean particle volume (MPV, open bars) and number of cells per coenobium 
(CPC, filled bars) after 48 h of incubation of Desmodesmus subspicatus NIVA-CHL55 in 
controls (C), in standard 10 x diluted test water (T) and in undiluted test water (U). Shown 
are averages, and error bars represent 1 SD (n=3). 

Phytoplankton genus-specific differences 

Significant colony formation in response to both zooplankton species occurred 

frequently in Scenedesmus strains (48%), especially in S. obliquus strains (67% for 

S9– S20) and less frequently in Desmodesmus (24%, Table 2.1). Also, the relative 

increase in colony size was more pronounced in Scenedesmus than in 

Desmodesmus species (Fig. 2.1), which mainly can be attributed to the large 

representation of S. obliquus strains. However, even within S. obliquus the relative 

size increase was highly variable among strains, when exposed to testwater from 

the same herbivore species. This variability is exemplified by the distribution of 

the different phenotypes (colony size classes) for different S. obliquus strains in 

response to B. calyciflorus test water (Fig. 2.2). Local selection on traits such as 

threshold concentration for induction, response time, and/or maximum colony size 

(Adler and Harvell 1990, Larsson and Dodson 1993, Pigliucci et al. 1996) may all 

lead to different responses in a standardized bioassay.  

Most Desmodesmus strains did not show significant colony formation; if they 

did it was not for MPV and CPC simultaneously (Table 2.1). Only D. subspicatus 

NIVA-CHL55 (D13) had weak, but significant and consistent colony formation. If 

induced colony formation is present within Desmodesmus, it is much less 

pronounced than within Scenedesmus (Fig. 2.1), although the latter were 

overrepresented by S. obliquus. We observed the formation of large colonies (up to 

16 cells) in D. subspicatus after several days of culture in the presence of live 
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Daphnia or live Brachionus (data not shown). This has also been reported by 

Hessen and Van Donk (1993) on the same strain (D13) but could be the result of 

selective grazing on unicellular algae. Nonetheless, the concentration of 

infochemicals could also play an important role here. In the bioassay with D13, we 

added an additional treatment consisting of undiluted B. calyciflorus test water. In 

this treatment we observed a doubling in final colony size compared with the 

standard 10% dilution in our bioassays (Fig. 2.3). Apparently D. subspicatus 

requires a higher infochemical threshold concentration for colony formation.  

Although Desmodesmus are characterized by the possession of spines, and 

predator-induced spine formation or elongation has been found in many aquatic 

organisms (Dodson 1989, Harvell 1991), we did not observe this for the 

Desmodesmus strains that we tested, which is corroborated by observations of 

Lürling and Beekman (1999) on Desmodesmus species. However, in mixed 

chemostats containing B. calyciflorus and D. maximus UTEX614, we observed an 

increase in mean cell size and spine length (data not shown), whereas this species 

did not respond in the bioassay. These effects could be caused directly by the 

zooplankton (e.g., selective grazing) or a nutrient effect. The possession of spines 

by Desmodesmus species may be a constitutive defense within this genus. Spines 

hamper ingestion and thus reduce the need for colony formation at low to moderate 

grazing intensities. On the other hand, the spineless Scenedesmus species are more 

vulnerable to grazing and may rely more on colony formation as inducible defense 

mechanism. Grazing experiments done with B. calyciflorus grazing on S. obliquus 

and D. quadricauda confirmed that the latter were less ingested and even less 

efficiently assimilated than S. obliquus (Verschoor et al. in press). Most 

Desmodesmus species predominantly appear as multicellular colonies with long 

spines and may thus be constitutively defended against grazing zooplankton. 

Spines should not be regarded as defensive traits only, however, because they may 

also serve to reduce sedimentation rates of the larger algal species (Conway and 

Trainor 1972). 
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Figure 2.4 Colony size of Scenedesmus obliquus in response to Brachionus calyciflorus 
treatments. Open symbols: MPV of S. obliquus MPI in response to different dilutions of 
test water. Test water was produced from different dilutions of filtrate of grazing B. 

calyciflorus on S. obliquus (1x =1; 10,000x =10-4) and controls (0). Filled circles: MPV of 
S. obliquus in the presence of live B. calyciflorus (Live BC). Densities in the live B. 

calyciflorus treatment were 100 individuals/mL, and the same density as was used in the 
culture to produce test water. Continuous line: logistic dose-response regression between 
dilutions of test water and MPV. Treatments are shown on the top axis, and dilutions for 
the regression on the bottom axis. To match the upper (categorical) scale with the lower 
(logarithmic) scale, controls (0) were plotted at 10-5 and live BC at 101. 
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The adaptivity of inducible colony formation 

The MPV of Scenedesmus obliquus MPI (S9) increased with increasing B. 

calyciflorus infochemical concentration and was greatest in the presence of live 

Brachionus (Fig. 2.4). The analysis of variance yielded significant differences 

between dilutions (F5,17=81.97, P < 0.001). A significant size increase only 

occurred above a certain threshold concentration. Contrast analysis showed that 

this threshold concentration was “100x” corresponding to a grazing pressure of 0.1 

B. calyciflorus/mL, which is in agreement with the threshold concentration found 

by Van Donk et al. (1999) for this strain. All S. obliquus strains appear to have 

significant colony formation, even species that do not have a very large increase in 

size (e.g., UTEX79, S16 in Fig. 2.1). These species probably have a higher 

threshold concentration for colony formation. Moreover, both D. subspicatus and 

S. obliquus colony sizes increased with test water concentration (Figs. 2.3 and 2.4). 

This suggests that many other Scenedesmaceae, including the “non-inducible” 

strains such as Desmodesmus spp. discussed previously, may have higher threshold 

concentrations for colony formation. Below this threshold concentration algae have 

a canalized (non-inducible) phenotype, whereas above that threshold concentration 

the inducible phenotype develops. This response type has a polygenic basis, and 

the frequency of inducible phenotypes depends on selection on threshold dosage 

(Lively 1986). 

In addition to selection on threshold concentration, there are physical, 

physiological, and ecological constraints to colony size. Colony size for S. obliquus 

never exceeded eight-celled coenobia (Fig. 2.2), and similar observations have 

been made for the other species. At very high infochemical concentration, the 

induced colony size will approach the maximum defense level, either as a 

rectangular hyperbola (Parejko and Dodson 1991) or as a sigmoid curve (Lively et 

al. 2000). A general mathematical formulation that captures both types of 

“saturating” curves is the logistic dose–response equation (Eq. 2.1), which 

becomes a rectangular hyperbola by setting the slope parameter b to 1. Fitting of 

the logistic dose–response curve (Fig. 2.4, solid line) yielded a significant 

regression (F3,17 = 151.11, P < 0.001, r2
adj = 0.97), with MPVmin = 43.0 µm3, a = 

70.1 µm3, h = 0.135, and b = 0.674. By summing MPVmin and a, we find that 

MPVmax = 113.2, which is within the range found for the “live BC” treatment. The 

description of bioassay data in logistic response model parameters allows an easier 

comparison across laboratories, for example by using half-maximum effect 

concentrations (h), similar to common practice in physiology or ecotoxicology 

(Colledge et al. 2000).  
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Figure 2.5 Relative strength of the defensive response in response to grazing risk. Going 
up from low to high grazing threat (infochemical concentration), defenses will only start to 
be induced at the induction threshold. From there on, the level of defense will increase until 
the maximum response concentration has been reached. Above that concentration, the 
defensive response will remain at maximum, regardless of the grazing threat. 
 

The proportionality between infochemical concentration and colony size only 

applies above the infochemical threshold concentration (minimum colony size) and 

as long as the induced response is not “saturating” (approaching maximum colony 

size). The adaptivity of inducible colony formation is thus confined to a range 

where an increase in size is most beneficial (Fig. 2.5) and depends on the delicate 

balance between costs of colony formation (Lürling and Van Donk 2000, 

Verschoor et al. 2005) and costs and predictability of grazing losses. This balance 

is highly dependent on herbivore preferences. For example, size increase only 

lowers maximum ingestion rates of B. calyciflorus when MPV is above the 

optimum particle size (Rothhaupt 1990, Verschoor et al. in press). The continuous 

change in available resources, competitors, and enemies ensures that there is no 

single best strategy, but that continuous adaptation is essential. The variety of 

colony formation responses as we observed within the Scenedesmaceae is just one 

character in this complicated evolutionary play. 

Conclusions 

In the Scenedesmaceae, we observed similar colony formation responses in the 

same strains to infochemicals released by herbivores from two different taxa. This 

suggests that the Scenedesmaceae have strain-specific colony formation to some 

common cue of herbivory. The size of induced colonies increases with the 

concentration of grazing-released infochemicals but only within a range between a 

lower limit, namely the threshold concentration, and an upper limit, the maximum 

colony size. 
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Chapter 3 

Linking herbivore-induced defenses to    

population dynamics 

Abstract 

Theoretical studies have shown that inducible defenses have the 

potential to affect population stability and persistence in bi- and 

tritrophic food chains. Experimental studies on such effects of prey 

defense strategies on the dynamics of predator-prey systems are still 

rare. We performed replicated population dynamics experiments 

using the herbivorous rotifer Brachionus calyciflorus and four strains 

of closely related algae that show different defense responses to this 

herbivore.  

We observed herbivore populations to fluctuate at a higher 

frequency when feeding on small undefended algae. During these 

fluctuations minimum rotifer densities remained sufficiently high to 

ensure population persistence in all the replicates. The initial growth 

of rotifer populations in this treatment coincided with a sharp drop in 

algal density. Such a suppression of algae by herbivores was not 

observed in the other treatments, where algae were larger due to 

induced or permanent defenses. In these treatments we observed 

rotifer population densities to first rise and then decline. The 

herbivore went extinct in all replicates with large permanently 

defended algae. The frequency of herbivore extinctions was 

intermediate when algae had inducible defenses.  

A variety of alternative mechanisms could explain differential 

herbivore persistence in the different defense treatments. Our analysis 

showed the density and fraction of highly edible algal particles to 

better explain herbivore persistence and extinctions than total algal 

density, the fraction of highly inedible food particles, or the 

accumulation of herbivore waste products or autotoxins.  
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We argue that the rotifers require a minimum fraction and density 

of edible food particles for maintenance and reproduction. We 

conjecture that induced defenses in algae may thus favor larger 

zooplankton species such as Daphnia spp. that are less sensitive to 

shifts in their food size spectrum, relative to smaller zooplankton 

species, such as rotifers and in this way contributes to the structuring 

of planktonic communities. 

 

 
Van der Stap, I., M. Vos and W.M. Mooij. 2006 Linking herbivore-induced defences 

to population dynamics. Freshwater Biology 51(3): 424-434. 
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Introduction 

Many species of plants and herbivores, both in aquatic and terrestrial ecosystems, 

have inducible defenses against their consumers (Karban and Baldwin 1997, Kats 

and Dill 1998, Tollrian and Harvell 1999). Such inducible defenses are predicted to 

have major effects on community dynamics, as has been pointed out in both 

theoretical (Abrams and Walters 1996, Edelstein-Keshet and Rausher 1989, 

Lundberg et al. 1994, Ramos-Jiliberto 2003, Underwood 1999, Vos et al. 2001, 

2002, 2004a, 2004b) and empirical studies (Peacor and Werner 2000, Raimondi et 

al. 2000, Turner et al. 2000). Inducible defenses may also affect minimum 

population densities, and thus the persistence of cycling populations (Verschoor et 

al 2004b, Vos et al. 2002, 2004a).  

Vos et al. (2004a) modeled a bitrophic (algae-rotifer) system and predicted 

inducible defenses to stabilize the trophic interaction under a wide range of 

conditions. In general, two different factors are important in determining consumer 

persistence and extinctions. First, when algal food levels are too low, herbivores 

will not be able to grow and reproduce sufficiently to maintain population growth. 

Secondly, when food levels are sufficient, but populations cycle, demographic 

stochasticity may cause extinctions when population densities are low in the 

troughs of such cycles. This risk was predicted to be higher when herbivores cycle 

with algae that have inducible or permanent defenses than with undefended algae 

(Vos et al. 2004a). This implies that induced defenses may have effects on 

persistence that work in different directions. On the one hand they promote local 

stability and thus persistence. On the other hand they may reduce the likelihood of 

consumer persistence when populations fluctuate, especially in comparison with a 

no defense scenario (Vos et al. 2004a: Fig. 4, top panel). In addition induced 

defenses may constrain the possibilities for herbivore persistence by decreasing the 

availability of highly edible food.  

Few experimental studies have been designed to explicitly compare the effects 

of different defense strategies (inducible, permanent, no defenses) on population 

dynamics. Here we show the consequences of these different prey defense 

strategies for predator population dynamics and persistence using a freshwater 

planktonic system. In such systems particle size is a major determinant of algal 

edibility for herbivorous zooplankton. Particle size in colonial algae is a 

combination of single cell size and the number of cells per colony. The closely 

related genera Scenedesmus and Desmodesmus show considerable among-strain 

variation in particle size in the absence of herbivores. In some strains particle size 

does not respond to the presence of herbivores (e.g., Daphnia water fleas, 
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Brachionus rotifers), while other strains are phenotypically plastic and respond 

with an increase in the number of cells per colony (Hessen and Van Donk 1993, 

Lampert et al. 1994, Lürling 1999b, Verschoor et al. 2004a). Such larger colonies 

are more difficult to handle for Brachionus calyciflorus, leading to reduced 

ingestion rates at high algal densities (Verschoor et al. in press). We refer to strains 

with small particle sizes as undefended, to those with fixed large particle sizes as 

permanently defended and to those that respond to herbivore presence as inducible. 

Our main question here concerns the effects of algal defense strategies on 

herbivore persistence and patterns in population dynamics. The model analysis by 

Vos et al. (2004a) showed that induced defenses may stabilize population 

dynamics in a substantial part of parameter space. Under alternative conditions that 

cause populations to cycle, induced and permanent defenses may increase the 

probability of herbivore extinctions (Vos et al. 2004a). Interestingly, and in 

contrast with this latter prediction, one empirical study showed that induced 

defenses actually prevented large amplitude population fluctuations (Verschoor et 

al. 2004b). Such fluctuations occurred in the no defense treatment, where they led 

to the extinction of the top predator. Unfortunately, that study did not include a 

permanent defense treatment, nor a control to test algal dynamics in the absence of 

herbivores. Here we do include such treatments in our study of the effects of 

different algal defense strategies. We performed the experiments in replicated 

batch cultures, at one nutrient level. Thus our results and discussion are necessarily 

limited to this particular condition of the environment. However, it does allow us 

to test whether differences in defense strategies, at this point in parameter space, do 

lead to qualitatively different patterns in population dynamics. 

Methods 

Origin and selection of algal strains and rotifers 

The various strains tested originated from different locations: Desmodesmus 

subspicatus (Chodat) Hegewald et Schmidt UTEX 2594 and Scenedesmus obliquus 

(Turpin) Kützing UTEX 2630 originate from the Culture Collection of Algae at the 

University of Texas, USA, Scenedesmus obliquus (Turpin) Kützing MPI from the 

Max Planck Institute for Limnology, Germany, while the Desmodesmus 

quadricauda (Turpin) Hegewald used has an unknown origin. We will refer to D. 

subspicatus as strain subspicatus, to S. obliquus MPI as strain obliquus I, to S. 

obliquus UTEX 2630 as strain obliquus II and to D. quadricauda as strain 

quadricauda. Occasionally algae will be referred to as plants. 
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Figure 3.1 Particle volumes of four algal strains after four days in the bio-assay (mean ± 
SE). The treatment consisted of exposure to medium containing Brachionus-released 
infochemicals (grey bars). Algae in the controls received medium that had not contained 
this herbivorous rotifer (white bars). ns: no significant difference; * : significant difference 
(P < 0.05) between controls and treatments. 

 

Scenedesmus and Desmodesmus species form a morphological diverse group 

of green algae. Desmodesmus used to be a subgenus of Scenedesmus, but was only 

recently placed into its own genus (Hegewald, 2000). The individual cells of these 

algae are elliptical to spindle-shaped and most Desmodesmus species bear spines. 

Individual strains of Scenedesmus can grow as unicells or can form colonies of 

two, four or eight cells. In cultures without herbivores they usually occur single-

celled, but colonies may form under poor nutrient conditions or in the presence of 

grazers such as Daphnia or Brachionus. Cells of Desmodesmus may also vary with 

respect to the number and size of spines (for figures of the species used see Hessen 

and Van Donk 1993: Fig. 1 and Lürling and Beekman 1999: Fig. 4). These species 

proved to be good food for rotifers in many experimental studies without any signs 

of toxicity. 

The selection of these four strains was based on a prior experiment in which 15 

algal strains of the genera Scenedesmus and Desmodesmus were evaluated. These 

15 strains were tested for the effect of Brachionus infochemicals on algal 

morphology in terms of particle volume and the number of cells per colony. 

Filtered water from a Brachionus culture (± 100 animals/mL) (10% v/v) was added 

to three replicates of 25 mL of algal solution per strain (WC medium, Guillard and 

Lorenzen 1972) and the cultures were incubated for four days at 20ºC under 120 

µmol·m-2·s-1 of light in 50 mL glass Erlenmeyer flasks. Strain subspicatus remained 

small and did not show colony formation in response to “rotifer-water” in the 
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bioassay (Fig. 3.1). Two obliquus strains clearly showed an increase in particle 

volume and the number of cells per colony. Strain obliquus II attained a slightly 

larger size than strain obliquus I. Strain quadricauda was large and colonial, both in 

the control and rotifer-water treatment. This difference started to become visible on 

day two, but was most pronounced on the fourth day of the bioassay. Thus we 

selected four algal strains that could be labeled as “undefended”, “inducible”, or 

“permanently defended”, based on the bioassay.  

The rotifer Brachionus calyciflorus Pallas was obtained from Microbiotests 

Inc., Belgium and was hatched from cysts. This B. calyciflorus strain was also used 

in the bioassays on basis of which the algal strains were selected. Brachionus spp. 

are cyclical parthenogens, whose populations are dominated by asexual females; 

males are non-feeding dwarf organisms. Hereafter, rotifer counts and densities 

refer to females. We will refer to B. calyciflorus as Brachionus. 

Culture of the algal strains and rotifers 

The algal strains were kept in batch in 100 mL Erlenmeyer flasks containing 50 

mL WC medium. The algal cultures were put on fresh medium twice a week 

before the population dynamics experiment, to ensure that they were in the 

exponential growth phase at the beginning of the experiment. They were 

continuously illuminated from above at an irradiance of 120 µmol·m-2·s-1 at 20ºC 

and put on a rotating shaking device (100 rpm) in an incubator (Gallenkamp). 

Rotifers were maintained in continuous culture at 20ºC using Scenedesmus 

obliquus MPI as food algae. 

Population dynamics experiment 

The experiment was performed using 24 cellulose-plugged 300 mL Erlenmeyer 

flasks containing 150 mL WC medium with vitamin B12 added (50 µg/L). We used 

a 4x2 factorial design with strain and presence or absence of Brachionus as the 

factors. All treatments were replicated three times. Flasks containing only algae 

were used as controls of algal growth in absence of the herbivore Brachionus. An 

inoculum of the algae was derived from the exponentially growing cultures. 

Brachionus were harvested from a continuous culture and inoculated at a 

concentration of 1 animal per mL two days after inoculation of the algae. At that 

day the total volume of the algae was between 2.1 and 4.1·107 µm3/mL. The 

experimental cultures were continuously illuminated from above at an irradiance of 

120 µmol·m-2·s-1 at 20ºC and put on a shaking device (60 rpm) to reduce 

sedimentation of the algae. Every day 5 mL samples were taken. After sampling 

losses were not replenished. The mean particle volume (µm3), density (number of 

particles per mL), and biovolume concentration (µm3/mL) of the algae were 
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determined in the size range of 4.0 to 25.0 µm equivalent spherical diameter (ESD) 

using a particle counter (CASY 1, Schärfe, Germany) fitted with a 60 µm capillary. 

Rotifer densities were measured by counting whole samples under a dissecting 

microscope. If the density of Brachionus in the cultures exceeded 100 individuals 

per sample, a sub-sample of 1 mL was counted. At the last day of the experiment 

the whole Erlenmeyer flask was checked for surviving rotifers if none were present 

in the sample. 

Data analysis 

Analysis of the controls without herbivores was carried out using ANOVA on the 

total algal biovolume concentration at the end of the experiment (averaged over 

days 15 to 18 for each replicate) and on the initial exponential growth rate during 

days 0-4. All of the described analyses were performed using Statistica 6.1. 

To test the effect of the different algal strains on the population dynamics of 

both algae and Brachionus a repeated measures ANOVA was performed. To meet 

the assumptions of ANOVA algal data were log-transformed and Brachionus data 

were square root transformed. The strains were used as a between-samples factor 

and days in the experiment were used as a within-subject factor. The particle 

volumes and total volume concentration of the algal strains were averaged over the 

total duration of the experiment and the effect of the presence of the herbivore was 

tested using ANOVA. Prior to analysis data were tested for homogeneity of 

variances using Cochran’s C test. Furthermore, data for repeated measures 

ANOVA were tested for sphericity using the Mauchley Sphericity test.  

As a measure of population persistence we checked whether Brachionus was 

still present at the end of the experiment. We related extinction or persistence to 

the presence of population cycles and four other factors. 1) The cumulative build-

up of Brachionus densities throughout the experiment as a potential source of 

autotoxins (Kirk, 1998), measured as the sum of Brachionus densities over 18 

days, 2) the density of highly edible particles for Brachionus (4-7.5 µm ESD, 

Verschoor et al. in press) at day 18, 3) the fraction of highly edible food particles 

(4-7.5 / 4-25 µm ESD) at day 18, and 4) the fraction of highly inedible particles 

(15-25 / 4-25 µm ESD, Rothhaupt, 1990, Verschoor et al. in press) at day 18, as a 

potential measure for interference with feeding on preferred smaller food particles.  

We performed binary logistic regressions with persistence of Brachionus (no 

or yes) as the response variable and different characteristics of the food as the 

independent variable. The significance of these regressions was evaluated in 

relation to a null model, using a chi-square test. The null model assumed a 

probability of persistence of 50%, which is the value we observed in the 

experiment when combining all treatments.  
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Figure 3.2 Top panel: Total biovolume concentration of the algae in absence of the 
herbivore (mean ± SE) between 15-18 days. ns: no significant differences among algal 
strains. Lower panel: The initial biovolume growth rate of the algae in absence of the 
herbivore (mean ± SE) between 0-4 days. Different letters on bars indicate significant 
differences among algal strains (Tukey hsd test after ANOVA). 
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Table 3.1 Results of the analysis of variance for repeated measures showing the effect of 
time and strain and the interaction between time and strain on both algal and rotifer 
population dynamics. 
 

 MS df Error df F P 

Algal density       

Strain 2.9 3 0.41 8 7.0 <0.05 

Time 9.0 18 0.069 144 130.2 <0.001 

Time x Strain 0.41 54 0.069 144 6.9 <0.001 

Brachionus density       

Strain 70.4 3 8.98 8 7.8 <0.01 

Time 184.4 18 1.97 144 93.5 <0.001 

Time x Strain 25.6 54 1.97 144 13.0 <0.001 

Results 

Controls: plants without herbivores 

The densities (particle concentrations) reached by algae in the absence of 

herbivores differed between strains, with subspicatus attaining the highest density 

and the highest growth rate, followed by the inducible strains obliquus I and 

obliquus II, while strain quadricauda had the lowest density and growth rate. The 

algal strains did not differ in biovolume concentration at the end of the experiment 

(ANOVA for day 15-18, P = 0.15, Fig. 3.2). This indicates that all algal strains 

reached the same carrying capacity. Initial exponential growth rates differed 

significantly between strains (ANOVA for day 0-4, P < 0.001, Fig. 3.2). This was 

caused by a higher growth rate of the undefended strain subspicatus (Tukey hsd 

test P < 0.01) while no differences were observed among the other three strains 

(Tukey hsd test P > 0.05). 

Plant-herbivore dynamics 

Patterns in population dynamics were highly replicable within algal strains. A clear 

contrast in the pattern of population dynamics was observed between the 

treatments with and without defenses in algae (Fig. 3.3). A repeated measures 

ANOVA showed a significant effect of time and strain and a significant interaction 

between time and strain on both total algal biovolume concentration and the 

densities of Brachionus herbivores (Table 3.1). The particle volumes of the algal 

strains averaged over the total duration of the experiment were larger in strain 

subspicatus, obliquus I and obliquus II in the presence of the herbivore Brachionus 

than in the absence of this herbivore (ANOVA, P < 0.001, P < 0.01, and P < 0.001 

respectively, Fig. 3.4). In strain quadricauda no significant difference was
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Figure 3.3 Population dynamics of the herbivorous rotifer Brachionus calyciflorus and the 
algae Desmodesmus subspicatus (a-c), Scenedesmus obliquus I (d-f), Scenedesmus obliquus 
II (g-i), and Desmodesmus quadricauda (j-l), showing three replicates. The left axis is used 
for the density of algal volumes (filled circles), the right axis for the density of herbivores 
(open circles). The † symbol indicates extinction of the herbivore.  
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observed between the particle volumes of the algae in the controls and in the 

presence of Brachionus (ANOVA, P = 0.13). Maximum Brachionus densities, 

when feeding on strain quadricauda, were about equal to the other treatments. A 

comparison of average biovolume concentrations between controls without and 

treatments with Brachionus showed a significant grazing effect on all algal strains 

(Fig. 3.4). The grazing effect was strongest on strains subspicatus and obliquus I 

(ANOVA, P < 0.001) and seemed weaker on strains obliquus II and quadricauda 

(ANOVA, P < 0.05). 

Population fluctuations 

To gain a more mechanistic insight in these differences in relation to variation in 

algal defenses, we focused on two aspects of predator-prey dynamics: the 

occurrence and type of predator population fluctuations, and the presence or 

absence of Brachionus extinctions. We observed distinct predator population 

fluctuations in the treatment where Brachionus was feeding on undefended 

subspicatus. Brachionus initially clearly suppressed algal densities in this 

undefended strain. Two marked peaks in Brachionus densities occurred in all three 

replicates of this treatment, while minimum rotifer densities remained rather high 

(Fig. 3.3a-c). Thus Brachionus populations faced a minimal risk of extinction 

under demographic stochasticity in this treatment. This pattern was not observed in 

the other treatments. Brachionus densities in both inducible and permanently 

defended treatments first increased and then declined towards the end of the 

experiment. 

Persistence of Brachionus 

The herbivore persisted throughout the experiment in all three replicates on the 

undefended strain subspicatus (Fig. 3.3a-c). The herbivore went extinct in two out 

of three replicates with inducible strain obliquus I (Fig. 3.3d-f) and in one out of 

three replicates with inducible strain obliquus II (Fig. 3.3g-i). The herbivore went 

extinct in all three replicates of the permanently defended strain quadricauda. 

Interestingly, the decline leading to the extinction of the herbivore started earlier in 

this permanently defended strain (Fig. 3.3j-l). Extinctions of Brachionus were not 

related to the occurrence of population fluctuations per se (Fig. 3.3a-c). 

Discussion 

We conducted this study to experimentally test the effects of prey size and prey 

defense strategies on the dynamics of predator-prey systems. We showed clear 

differences in the population dynamics of an herbivorous rotifer when feeding on 

four strains of algae that showed no defenses, inducible defenses and permanent 
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defenses. Patterns in population dynamical time series were highly replicable 

within prey strains and significantly different between prey strains. The patterns for 

the undefended strains were fundamentally different from the patterns for the 

strains with permanent and inducible defenses. The fact that algal carrying 

capacities, in terms of biovolume concentration, were equal in the controls, show 

that we are really dealing with differences due to the quality or size of those algae. 

Particle densities differed, but biovolume concentrations were equal, implying that 

the total volume of the algae was packaged in very different ways among algal 

strains.  

In a recent paper, Vos et al. (2004a) made predictions for population level 

effects of different defense strategies using an extended version of the 

Rosenzweig-MacArthur model with a focus on stability and persistence. Their 

model analysis clearly showed that enriched bi- and tritrophic food chains with 

induced defenses were less likely to show population oscillations than systems 

with fixed or no defenses. Interestingly, Verschoor et al. (2004b) subsequently 

showed experimentally that bi- and tritrophic food chains with induced defenses 

approached a stable equilibrium without any oscillatory tendency, while those 

without defenses in algae showed high amplitude population fluctuations. The 

experiments by Verschoor et al. (2004b) were conducted using semi-continuous 

systems, while those in the present paper were performed using batch systems. 

This difference in flow-through caused some differences in dynamics between 

these systems. However, an oscillatory tendency was clearly present in the 

dynamics of both systems when algae were undefended. A clear advantage of the 

present study is the inclusion of controls. These provide insight in algal dynamics 

in the absence of herbivores, showing that the undefended algal strain subspicatus 

has a higher growth rate than the other strains. This raises an alternative hypothesis 

for the observed differential dynamics between treatments with and without 

defenses, i.e. algal growth rate itself. This is possible, but further analysis using the 

model of Vos et al. (2004a, 2004b) showed that a difference in growth rate 

between algal strains (of the observed magnitude) is unlikely to cause such a 

difference in stability in this plant-herbivore system (see Verschoor et al. 2004b).  

The particle volumes of the algal strain in the population dynamics experiment 

(Fig. 3.4) differed from those in the bioassay (Fig. 3.1). Particle volumes in the 

presence of live Brachionus are due to a combined effect of both inducibility and 

grazing by the herbivore. We observed a doubling of mean particle volume in 

strain subspicatus (D. subspicatus UTEX 2594) in presence of the herbivore 

Brachionus (Fig. 3.4). In previous bioassays no significant responses in this strain 

were observed, neither in response to Brachionus nor Daphnia infochemicals 

(Verschoor et al. 2004a). Another subspicatus strain (D. subspicatus NIVA-CHL 
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Figure 3.4 Top panel: Particle volumes of four algal strains in the population dynamics 
experiment. Lower panel: Total biovolume concentration of the algal strains. Shown are 
means ± SE averaged over the total duration of the population dynamics experiment in the 
presence of the herbivore Brachionus (grey bars) or in the controls in absence of this 
herbivorous rotifer (white bars). ns: no significant difference; * : significant difference (P < 
0.05) between controls and treatments. 
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Figure 3.5 Extinction or persistence of the herbivore Brachionus at the end of the 
experiment related to (top panel) the density of food algae that is highly edible, with sizes 
of 4-7.5 µm ESD, (middle panel) the fraction of food algae that is highly edible, 4-7.5 / 
4-25 µm ESD, and (lower panel) the fraction of food algae that is highly inedible, 15-25 / 
4-25 µm ESD in the treatments: undefended algae (Desmodesmus subspicatus, filled 
diamonds); inducible algae (Scenedesmus obliquus I, filled circles and Scenedesmus 

obliquus II, open circles); permanently defended algae (Desmodesmus quadricauda, filled 
triangles). The line represents the logit regression curve.  
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55) investigated by Hessen and Van Donk (1993) did show a response to Daphnia. 

Verschoor et al. (2004a) reported a doubling in final colony size in D. subspicatus 

NIVA-CHL 55 if undiluted Brachionus-water was added. The increased particle 

volume of D. subspicatus UTEX 2594 in our experiment in the presence of live 

Brachionus fully supports the idea that D. subspicatus requires a higher 

infochemical concentration before colonies are induced. Even in its induced state 

our strain of subspicatus was still as small as, or smaller than, non-induced 

obliquus I and II, i.e., than these inducible algae in their undefended state. Thus 

this strain is still the most edible of the ones studied here. 

We were intrigued by the herbivore population crashes in the induced and 

permanent defense treatments in the batch experiments and evaluated several 

hypotheses that could explain the observed Brachionus extinctions. First of all, we 

were surprised that herbivores persisted in all the replicates with small undefended 

algae. The observed population fluctuations did not result in dangerously low 

herbivore densities. In contrast, herbivore extinctions occurred in all replicates with 

large permanently defended algae and when algae had inducible defenses. This led 

us to examine the potential effect of different aspects of food quality (in terms of 

defenses) on the probability of herbivore extinction. In particular, we related the 

extinction or persistence of Brachionus at the end of the experiment to four factors 

that are likely to affect the growth of rotifer populations and thus population 

persistence.  

First, the cumulative density of Brachionus is a measure for the build-up of 

herbivore waste products or autotoxins. This cumulative build-up of Brachionus 

densities during the course of the experiment remained low on permanently 

defended algae and was very high on undefended algae. Since this high cumulative 

rotifer density in the subspicatus treatment did not co-occur with negative effects 

on growth rate or persistence, such metabolic waste products or autotoxins are 

highly unlikely to have been responsible for extinctions in these experiments. Thus 

we could exclude a density dependent effect of waste products or autotoxins 

building up during the experiment.  

Secondly, total algal densities were high enough to support initial herbivore 

growth in all defense treatments and did not decrease below the algal densities at 

inoculation. Therefore it seems unlikely that extinction occurred because of a low 

food level. The occurrence of herbivore persistence and extinctions was clearly 

related to the density of highly edible algae, which was high in the no defense 

treatment and low in the permanent defense treatment (Fig. 3.5, top panel). Algae 

with inducible defenses took an intermediate position. The density of highly edible 

small particles was very low in strain quadricauda and Brachionus went extinct in 

all replicates of this treatment. In strain subspicatus this density of highly edible 
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food particles was much larger and the herbivores were alive in all replicates at the 

end of the experiment. Strains obliquus I and obliquus II were intermediate in the 

density of small particles and extinctions seemed to be stochastic. We performed a 

logit regression with persistence of Brachionus as the binary response variable (0 

for extinction and 1 for persistence, on day 18) and the density of small, highly 

edible food particles on day 18 as the independent variable. The estimated model 

showed a significantly better fit to the data than the null model (χ2 = 4.69, P = 

0.03).  

Thirdly, the algae showed an increase in size as an induced response to the 

presence of the herbivore and this aspect was reflected in the fraction of small algal 

particles over the total available algal biovolume concentration. The fraction of 

highly edible algal particles showed an even more explicit relationship with the 

probability of persistence than the density of these particles. At the lowest fractions 

of highly edible algal particles herbivores went extinct in all replicates of 

quadricauda and one of obliquus, while they persisted at the highest fractions of 

highly edible algal particles in one replicate of obliquus and all replicates of 

subspicatus (Fig. 3.5, middle panel). The estimated model yielded a significantly 

better fit to the data than the null model (χ2 = 7.37, P = 0.007). While the density of 

these small particles already provided a sufficient explanation for the observed 

persistence and extinctions, the logit regression of the fraction of highly edible 

small particles indicated an even better fit to the occurrence of persistence and 

extinctions. Therefore the chance of persistence at the end of the experiment was 

positively related to the availability of optimally sized food algae (the larger the 

density of small, edible particles in relation to total algal availability, the larger the 

chance of persistence).  

Fourthly, the reverse relation was expected for the fraction of very large, 

inedible particles: a high fraction of these could interfere with feeding of the 

rotifers on the smaller particles, because of pseudotrochal screening, that reduces 

ingestion rates (Gilbert and Starkweather 1977, 1978). This fraction of very large 

particles was small for the permanently undefended algae and large for the 

permanently defended algae. Extinctions occurred both at high and low fractions of 

these large particles, especially in the case of inducible algae (Fig. 3.5, lower 

panel). The estimated model did not yield a significantly better fit to the data than 

the null model (χ2 = 2.78, P = 0.09). The above implies that the fraction of small, 

highly edible particles is an important factor for persistence of the herbivore and 

that if algae attain a size which is slightly larger than the optimal size of 4-7.5 µm 

ESD this may already have negative effects on herbivore population densities. 

Our experimental design did not include a wide range of algal species or 

strains with a fixed size, nor a range of algae with inducible defenses that may 
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attain different sizes. However, our understanding of the effects of inducible 

defenses on population dynamics has improved considerably through the 

experimental results presented here. Incorporating a wider range of algal strains in 

future experiments, as well as adding combinations of different nutrient levels and 

herbivore mortality rates (see Vos et al. 2004a: Figs. 2 and 3), could further 

enhance our understanding of the relative effects of prey size and defense 

inducibility on the dynamics of such predators and prey. 

Our results indicate that algal defenses reduced the fraction of highly edible 

food particles in these experiments, and thus increased the total algal concentration 

needed by herbivorous rotifers to maintain constant population densities. From our 

data we conclude that food particles in the less preferred intermediate size range 

could interfere with the uptake of highly edible food particles by these rotifers. We 

conjecture that induced defenses in algae may thus favor larger zooplankton 

species such as Daphnia spp., that are less sensitive to shifts in their food size 

spectrum, relative to smaller zooplankton species, such as rotifers. This difference 

between daphnids and rotifers could be one of the ways inducible defenses affect 

the structure of freshwater communities. 
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Chapter 4 

From inducible defenses to predator-prey dynamics: 

linking models and experimental data 

Abstract 

Theory on inducible defenses predicts these to have stabilizing 

effects. In the present study we link data and theory on inducible 

defenses by fitting a mechanistic predator-prey model to empirical 

data. We evaluate predictions about the effects of inducible defenses 

on stability and on the risk of predator extinctions. The data 

originated from batch experiments with a rotifer species as the 

predator and four strains of algae that differed in their defenses as 

prey. Previous statistical analysis showed that predator persistence 

was significantly related to the density and fraction of edible algae. 

The present mechanistic model in which inducible defenses were 

incorporated accurately described the observed population dynamics, 

as opposed to a model without defended species. The parameter 

values we obtained were fed back into a version of the model in 

which nutrients were not depleted. This allowed a projection of the 

long-term consequences of induced defenses for predator-prey 

dynamics. The analysis predicts stability for a broad range of 

inducible changes in algae. It also shows that quantitative variation in 

handling times of differently defended prey place predators at distinct 

locations in the stability area with different risks of stochastic 

extinction.  

 

 
Van der Stap, I., M. Vos and W.M. Mooij. From inducible defenses to predator-prey 

dynamics: linking models and experimental data. Submitted. 
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Introduction 

A central theme in the study of predator-prey systems is the prediction that 

enrichment will destabilize trophic interactions and lead to high amplitude 

population cycles that entail a risk of local extinctions for both predator and prey. 

Several laboratory studies have shown such population oscillations and extinctions 

(Fussmann et al. 2000, Huffaker et al. 1963, Luckinbill 1973). In contrast, at low 

carrying capacities or high predator mortalities the predator faces deterministic 

extinction, because food supplies are not sufficient to allow births to compensate 

for losses. In between these two extremes of carrying capacity, theory predicts 

stable coexistence of predator and prey. According to classical models, however, 

such stable coexistence only occurs for a narrow range of predator mortalities, 

especially at high carrying capacities. However, communities can be stable for 

long periods of time in nature (reviewed in DiMichele et al. 2004), and 

mechanisms that influence community stability have therefore been the subject of 

intense study (Abrams and Walters 1996, Armstrong 1976, Fussmann et al. 2000, 

Luckinbill 1973, McCann et al. 1998, McCauley and Murdoch 1987, Rosenzweig 

1971, Rosenzweig 1973, Rosenzweig and MacArthur 1963, Schaffer and 

Rosenzweig 1978, Vos et al. 2001, Yodzis 1981). 

A recent model study predicted that inducible defenses can stabilize predator-

prey systems (Vos et al. 2004a). Such inducible defenses occur in a wide range of 

ecosystems and have been shown and studied in hundreds of species of animals 

and plants (Havel 1987, Karban and Baldwin 1997, Kats and Dill 1998, Tollrian 

and Harvell 1999). The analysis of Vos et al. (2004a) provided a simple and 

intuitive explanation as to why inducible defenses should stabilize predator-prey 

interactions. In an extended version of the Rosenzweig-MacArthur model (1963) 

two prey types are distinguished: an undefended type and a defended type. At low 

consumer densities prey will be undefended and edible, thus enhancing predator 

persistence. At high consumer densities the prey is protected from overexploitation 

through their defenses. These defenses may result in longer handling times, lower 

attack rates or both. To see how inducible defenses affect stability Vos et al. 

(2004a) focused on two boundaries: the transcritical bifurcation or existence 

boundary, which is the point where the predator is just able to maintain itself at 

very low densities, and the Hopf bifurcation or stability boundary, the point where 

exploitation becomes so strong that cycles ensue. In the classical Rosenzweig-

MacArthur model the existence and stability boundaries converge at high carrying 

capacities, leaving little room for stable coexistence. However, the analysis of Vos 

et al. (2004a) showed that in the case of inducible defenses the two boundaries stay 
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apart, thus allowing coexistence. The model system with inducible defenses has the 

existence boundary of the undefended prey type, and approximately the stability 

boundary of the defended prey type. This creates a considerable range of 

conditions that result in stable predator-prey dynamics, even at high carrying 

capacities. 

To test these model predictions Verschoor et al. (2004a) used semi-continuous 

cultures in an algae-rotifer system. They showed that the presence of inducible 

defenses prevented large population fluctuations. Van der Stap et al. (2006) 

obtained experimental data on the effects of inducible defenses during batch 

experiments using a comparable algae-rotifer system. This study showed that 

predator persistence could be related to the defense strategy of the four prey strains 

used. The statistical analysis of time series by Verschoor et al. (2004) and Van der 

Stap et al. (2006) provided a first empirical test of the claim that inducible defenses 

promote stability of these experimental bi- and tritrophic food chains. 

In the present study we provide a quantitive link between theory and data in 

addition to the above mentioned qualitative analyses. Until recently, the integration 

of quantitative theory and experiments in ecology was often rather weak (Hall 

1988, Ives and Agrawal 2005). In the last decade, however, the application of 

mechanistic models to experimental predator-prey systems has increased (e.g., 

Kooi and Kooijman 1994, Shertzer et al. 2002, Van Veen et al. 2005). Compared 

to statistical approaches, the advantage of applying mechanistic models to 

empirical data is that each of the parameters of the model can be ecologically 

interpreted in its own right. These parameters include the maximum specific 

growth rates, attack rates, handling times, conversion efficiencies and mortality 

rates. If model fits are applied to experimental data that test important ecological 

hypotheses and concepts, this acts to strengthen the link between theory and data. 

In this paper we analyze the batch experiments performed by Van der Stap et 

al. (2006) on algae-rotifer interactions that tested the effects of algal defenses on 

population dynamics. In the current analysis we use a mechanistic model suitable 

for application to the transient dynamics in a batch experiment. Data from these 

transient dynamics provide more information on the growth, induction and 

mortality rates than data from equilibrium conditions. Initially, the model did not 

take inducible defenses into account (Table 4.1, parameter set 0). The model 

without such shifts in prey size showed a very poor fit (Fig. 4.1). Then, inducible 

defenses were incorporated and the model was run for a set of a priori defined 

parameters, followed by a stepwise procedure to replace some of these initial 

values with best fitting estimates. The significance of the differences of the 

obtained parameters between algal strains was tested at each step using the 

replication in the experimental design. Our analysis stresses the importance of 
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explicitly including phenotypic plasticity in prey size for understanding the 

observed population dynamics. All four algal strains showed such variation in their 

particle volumes, the factor that affects their handling by predators, but they did so 

at different levels. 

Methods 

The experimental data 

The experimental data were collected by Van der Stap et al. (2006). The 

experiments were performed in a batch system using four strains of 

Scenedesmaceae that differ in their response to herbivore presence. Desmodesmus 

subspicatus UTEX 2594 shows only minor changes in mean particle volume in 

response to grazing and remains small and edible. Two Scenedesmus obliquus 

strains clearly show an increase in particle volume and the number of cells per 

colony. Scenedesmus obliquus UTEX 2630 attain a slightly larger size than 

Scenedesmus obliquus MPI. The clear response in size in these two strains made us 

characterize them as inducibly defended. Desmodesmus quadricauda is large and 

colonial, both in the control without predators and in the presence of predators. The 

experiments were run in a 4x2 factorial design with algal strain and presence or 

absence of the herbivore Brachionus calyciflorus as the factors. Flasks containing 

only algae were used as controls, showing algal growth in absence of the 

herbivore. See Van der Stap et al. (2006) for further details. All data were 

converted to carbon using a carbon to biovolume ratio of 0.32 mg C/mm3 measured 

for the algae (Verschoor et al. 2004b) and a conversion of 0.0001 mg C per 

individual for B. calyciflorus (Rothhaupt 1993). 

The model 

The autonomous prey growth in predator-prey models is often described with a 

logistic term, which implies a constant tendency of regrowth to a fixed carrying 

capacity. However, such a formulation is not suitable to model data from 

experiments in which nutrient depletion progressively limits algal growth during 

the course of an experiment. We therefore replaced the logistic term with a Monod 

(1949) type term for nutrient-limited algal growth and included a differential 

equation for the nutrients. We followed the approach taken by DeAngelis (1992) of 

modeling nutrient-algae interactions with no particular nutrient in mind. To 

simplify things further, we expressed the limiting nutrient in the model in units of 

carbon. Consequently, the initial nutrient concentration in the model directly 

represents the maximum biomass of algae that can be produced. Nutrients may 

become available to the algae due to nutrient cycling but we assumed that this 
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process can be ignored at the time scale of the experiments. In a way 

corresponding with the model of Vos et al. (2004b) inducible defenses were 

incorporated in the predator-prey equations by allowing a predator density-

dependent flow from the undefended part of the prey population to the defended 

part. Similarly, decay of defenses is included as a predator density-dependent flow 

from the defended to the undefended part. We could ignore algal losses due to 

sedimentation because the experiments were done on rotating tables. This results in 

the following set of differential equations for the hypothetical nutrient N, the 

undefended fraction of algae A1, the defended fraction of algae A2 and the predator 

B: 
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The model has 13 parameters (see table 4.1), which is six more than a 

comparable model without inducible defenses. These include the handling time 

(hA2) and attack rate (aA2) on the defended form plus the four parameters that 

govern induction and decay of defenses (iA, dA, hI, b). Note that the model assumes 

A1 and A2 to have the same autonomous growth rate. A notation different from Vos 

et al. (2004b) for induction and decay functions is used without any consequences 

for the model. 

Linking data and model 

We fitted the model by minimizing the percentage of unexplained variance 

between model and data. To give the algal and Brachionus data equal fit we scaled 

both sets of observations so that the total variance in the scaled data was one for 

each set. The observed and predicted densities were square root transformed to 
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Figure 4.1 Fit of the model in which values specific to the batch culture system were used, 
but inducible defenses were not incorporated in the model (parameter set 0) to the observed 
data for algal biomass of D. subspicatus (a), S. obliquus MPI (b), S. obliquus UTEX 2630 
(c), D. quadricauda (d) and for Brachionus biomass (e-h). Shown are each of the three 
replicates from the experiment (data points connected with lines) and the model mean 
(line).
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make the variances independent of the means. We used the downhill simplex 

method in multi-dimensions (Press et al. 1992) to estimate the parameters that 

minimized the squared deviations between model and data assuming measurement 

errors to be the dominant source of noise in the data. The simplex method is simple 

in its application because it only requires evaluations of the function that is to be 

optimized, not derivatives of that function with respect to each of the parameters. 

As a trade-off it is less efficient in terms of the number of model evaluations that it 

requires. 

Results 

The model fit 

We estimated an initial nutrient concentration of 0.41 and algal growth rates rA of 

the strains in the range of 0.56 to 1.34 (Table 4.1) on basis of the control 

experiments with only algae. Within a broad range, hN hardly affected the fit, 

because this parameter only affects the model results during the short transition 

period from exponential to nutrient limited growth. Therefore hN was arbitrarily 

fixed at half the initial nutrient concentration in all analyses. The total variance in 

the predator-prey experiment was 0.0197 for the transformed algal data and 0.0230 

for the transformed Brachionus data. Applying the parameters for the model 

without inducible defenses (Table 4.1, set 0) to the batch data resulted in a very 

poor fit (Fig. 4.1). The modeled algal abundances for D. subspicatus were higher 

than observed. The modeled herbivore densities showed a too high maximum for S. 

obliquus MPI and were too low for the other algal strains half-way and too high at 

the end. Apparently, for these algal strains the handling times of Brachionus in the 

experiment were lower than assumed in the model. The inclusion of inducible 

defenses in the model resulted in a much better fit (Table 4.1, set 1). However, 

clear discrepancies remained between model and data (figure not shown). In 

particular, the model showed a rather poor fit to the fluctuations in the herbivore 

populations feeding on D. subspicatus. This implies that the modeled interaction 

between Brachionus and D. subspicatus was not strong enough. Furthermore, the 

modeled Brachionus densities were still too low half-way and too high at the end.  

We explored two approaches to capture these dynamics. First, the ratio 

between the handling time of undefended and defended algae was optimized 

(Table 4.1, set 2). Second, we optimized the induction and decay rates (Table 4.1, 

set 3). Both led to slightly improved fits, i.e., lower unexplained variances, but in 

qualitative terms did not solve the discrepancies mentioned above. When we 

optimized both the ratio in handling time between undefended and defended prey 

and the induction rates from the data, however, the modeled patterns showed a 
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Figure 4.2 Fit of the model in which both the ratio in handling time between undefended 
and defended prey and the induction rates were estimated from the data (parameter set 5) to 
the observed data for algal biomass of D. subspicatus (a), S. obliquus MPI (b), S. obliquus 
UTEX 2630 (c), D. quadricauda (d) and for Brachionus biomass (e-h). Shown are each of 
the three replicates from the experiment (data points connected with lines) and the model 
mean (line). 
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good fit to the observed data (Fig. 4.2) and the unexplained variance was reduced 

from 75% to 33% of the total variance (Table 4.1, set 4). Estimating decay rate 

separately from the induction rate (Table 4.1, set 5) resulted in such a small 

improvement of the fit that we considered the model in which both the handling 

time ratio and induction rates were optimized (set 4) the best fitting model. 

The resulting parameters 

Our analysis resulted in five sets of parameters of the inducible defenses model in 

addition to the original parameter set used. Because the experiments were 

replicated, we could perform statistical tests for all parameters that were estimated 

per replicate: handling time of the edible fraction (sets 1-5), induction rate (sets 1, 

2, 4, 5) and decay rate (set 5). Using MANOVA, we found significant differences 

between the defense treatments for each of the five parameter sets as a whole. 

Using ANOVA, we zoomed in on each of the parameters per set. Significant 

differences were found for all parameters per set except for two marginally 

significant results for handling time in parameter set 2 (P = 0.075), and induction 

rate in parameter set 5 (P = 0.053). This indicates that the differences between 

defense treatments are well reflected in each of the parameter sets and that we can 

ecologically interpret these differences by inspecting these parameters. 

The highest values of handling times were observed for S. obliquus UTEX 

2630 and D. quadricauda (0.198-0.230) and somewhat lower values for S. 

obliquus MPI (0.164-0.201) in all parameter sets. The handling time of D. 

subspicatus varied considerably with increasing fit of the model. In the best fitting 

parameter sets 4 and 5 the handling time of D. subspicatus had a value of 0.073. In 

the parameter set in which only the induction rate was estimated from the data (set 

3), we obtained values of 0.370-0.663 for strains S. obliquus MPI, UTEX 2630 and 

D. quadricauda and a higher value of 1.311 for D. subspicatus. In parameter sets 4 

and 5 the ratio in handling times between undefended and defended prey was much 

higher than in parameter sets 1-3 and coincided with considerable lower estimates 

of the induction rate. The pattern of higher induction rates in D. subspicatus was 

even stronger in sets 4-5. We did not further interpret the decay rates, because they 

contribute minimally to the explained variance. 
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Discussion 

Our analysis with a mechanistic predator-prey model showed that including 

inducible defenses was crucial to understanding the observed population dynamics 

of predator and differently defended prey. The model results pointed to the 

importance of the ratio of handling times on defended and undefended prey in 

combination with the induction rate of defenses. In the experiment we observed 

predator populations to fluctuate when feeding on small undefended algae (D. 

subspicatus). During these fluctuations minimum rotifer densities remained 

sufficiently high to ensure population persistence. In the treatments where algae 

were larger due to induced or permanent defenses (S. obliquus MPI, UTEX 2630 

and D. quadricauda) we observed rotifer population densities to first rise and then 

decline, with the predator going extinct in several replicates. The mechanistic 

model accurately described the observed population dynamics, though it did not 

completely follow the fluctuations of the predator feeding on D. subspicatus. We 

subsequently projected and evaluated the consequences of the above mentioned 

critical parameters for the long-term dynamics of the predator-prey interaction.  

We note that the unexplained variance of the model for the different parameter 

sets shows three distinct groups: 1) The parameter set 0 of the model without 

inducible defenses with a very poor fit; 2) the intermediate sets 1, 2 and 3 with an 

unexplained variance of 65-75% and 3) the best fitting sets 4 and 5 with an 

unexplained variance of 33%. The most remarkable difference between set 0 and 

sets 1-3 is the presence of inducible defense parameters (hA2, aA2, iA, dA, hI, b). The 

inclusion of these extra parameters reduced the unexplained variance to half its 

original value. The estimate of handling time (0.2 d·mg C-1
·mg C-1) in sets 1-3 was 

lower than the estimate of 0.5 in the model of Vos et al. (2004b). This difference is 

linked to the difference in the estimate of the Brachionus mortality rate of 0.17 d-1 

(Vos, et al. 2004b) compared to the observed value of 0.93 d-1 during the decline of 

Brachionus in the experiment. The estimated handling time of about 0.2 in sets 1-3 

leads to an initial population growth rate of Brachionus (≈ cAB/hA1 – dB) in the order 

of 0.75 to 1.04 which is higher than the estimate of Vos et al. (2004b) of 0.55 d-1, 

but are in concordance with the experimental observations. Note that estimating the 

induction rates from the data in set 4 resulted in induction rates in the same order 

of magnitude as the estimated values from Vos et al. (2004b). For the undefended 

D. subspicatus we observed a significantly shorter handling time in our best fitting 

parameter sets 4-5, in concordance with the small particle size of this strain (Van 

der Stap et al. 2006). Only with a low value of the handling time the model could 

reproduce the observed population fluctuations for this strain. The handling times
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Figure 4.3 The existence and stability boundaries for a range of carrying capacities and 
herbivore mortality rates in bitrophic food chains. The existence and stability boundaries 
separate areas with qualitatively different dynamics. Area A0: only plants exist. Area A1: 
stable coexistence of plants and herbivores. Area B1: plants and herbivores fluctuate. The 
initial points (filled circles) of the experiment in relation to existence and stability 
boundaries are shown for prey strains with short (hA1=0.07, lower circle) and long handling 
time (hA1=0.2, upper circle). Note that the y-position of these points is scaled to their 
respective existence and stability boundaries. Dashed arrows indicate the movement of the 
experimental data point during the experiment, in which nutrients were depleted.  
 

longer handling time than the model found. D. quadricauda is a permanently large, 

four-celled algal strain and their large particle size (Van der Stap et al. 2006) 

together with their long spines would make D. quadricauda a hardly edible strain. 

Inducible defenses in prey, e.g., by an increase in size, increase the handling times 

and in some species decrease the ingestion rate of their predator, if this predator is 

gape limited (Verschoor et al. in press). Ingestion rates of the predator can also be 

decreased by a low food quality of algae that increase the digestion time by 

nutrient limitation or thickening of their cell wall (Van Donk and Hessen 1993). 

To make the final step in linking the experimental data with the theoretical 

model we interpreted the parameters of set 4 in terms of bifurcation plots. These 

plots have carrying capacity on the x-axis and predator mortality rate on the y-axis 

and show the regions of predator extinction, stable coexistence and predator-prey 

cycles. The start of our experiment can be represented in these plots as a given 

combination of carrying capacity and predator mortality. Each of the algal strains 

has its own position between the existence and stability boundaries, depending on 

the estimates for handling time and attack rate on the undefended and defended 

algae. The plot for the most edible strain shows that the point representing the 

initial experimental conditions is just above the stability boundary for this strain 
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and far below the existence boundary (Fig. 4.3). This implies that we should see 

dampened oscillations for this strain (Vos et al. 2005). These are indeed visible in 

the model, but less so in the Brachionus data (Fig. 4.2e). For the other three prey 

strains the point representing the realized conditions is half way the existence and 

stability boundaries (Fig. 4.3). During the course of the batch experiment nutrients 

were depleted causing the point in the bifurcation plot to move towards a lower 

carrying capacity and probably towards higher herbivore mortality. Therefore 

herbivores that have their initial point closer to the existence boundary will go 

extinct earlier compared with herbivores that start further away from the existence 

boundary (Fig. 4.3). 

During the course of the batch experiment nutrients were depleted and 

herbivore mortality increased causing the initial point in the bifurcation plot (Fig. 

4.3) to move towards a lower carrying capacity and higher herbivore mortality. 

This will lead to an earlier extinction of Brachionus for those strains for which the 

experimental data point is closest to the existence boundary, due to their longer 

handling times (Fig. 4.3). This is in agreement with the persistence and extinctions 

observed in the experiment by Van der Stap et al. (2006). Herbivores always 

persisted when feeding on undefended algae (D. subspicatus), while when feeding 

on the inducible and permanently defended algal strains (S. obliquus MPI, UTEX 

2630 and D. quadricauda) herbivore extinctions were observed. Future 

experimental tests of theory on inducible defenses should include a range of 

carrying capacities (Verschoor et al. 2004) or a range of herbivore mortalities, for 

example by using chemostats. 

Our analysis provides mechanistic insight in the relation of inducible defenses 

and stability. It shows that a mechanistic model that explicitly takes into account a 

shift in prey size and handling time can explain the observed population dynamics 

of both predator and prey. The model analysis explains the experimentally 

observed pattern of herbivore persistence and extinction in terms of these 

differences in handling times on differently defended algal prey. At a more general 

level, we conclude that such a linking of models and experimental data is useful in 

obtaining a more mechanistic understanding of predator-prey interactions. 
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Chapter 5 

Inducible defenses prevent strong population 

fluctuations in bi- and tritrophic food chains 

Abstract 

Recent theoretical work (Vos et al. 2004a) predicts that inducible 

defenses prevent strong population fluctuations under high levels of 

nutrient enrichment. Here we evaluate this model prediction and show 

that inducible defenses in algae stabilize the dynamics of 

experimentally assembled bi- and tritrophic planktonic food chains. 

At high phosphorus levels, we observed strong population 

fluctuations in all food chains with undefended algae. These 

fluctuations did not occur when algae had inducible defenses. At low 

phosphorus levels, we observed deterministic consumer extinctions, 

as predicted by stoichiometric theory. Our study thus shows that both 

biotically and abiotically induced changes in algal food quality affect 

the stability and persistence of planktonic food chains. 

 

 
Verschoor, A.M.., M. Vos and I. van der Stap. 2004. Inducible defences prevent strong 

population fluctuations in bi- and tritrophic food chains. Ecology Letters 7(12): 1143-1148. 
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Introduction 

Enriched food chains may show extreme population fluctuations that result in 

stochastic species extinctions, the so-called paradox of enrichment (Rosenzweig 

1971). This phenomenon has frequently been observed in laboratory studies (e.g., 

Luckinbill 1973, McCauley et al. 1999, Fussmann et al. 2000), but rarely in nature 

(Murdoch et al. 1998). 

Inducible defenses are a candidate mechanism for explaining this contrast. 

They have been predicted to stabilize the dynamics of bi- and tritrophic food 

chains, even in highly enriched systems (e.g., Abrams and Walters 1996, Vos et al. 

2004a). Inducible defenses have been shown to occur in hundreds of species, 

across a wide range of taxa (Karban and Baldwin 1997, Kats and Dill 1998, 

Tollrian and Harvell 1999). This indicates their potential importance in natural 

food webs. 

The timing of inducible defenses is of crucial importance for their effect on 

stability. Inducible defenses may destabilize dynamics when considerable time lags 

occur between changes in consumer density and the induction or relaxation of 

defenses (e.g., Underwood 1999). However, even when delays are present, 

population fluctuations may be damped and thus not sustained indefinitely 

(Lundberg et al. 1994). Interestingly, inducible defenses may stabilize dynamics 

when delays are absent or minimal (Abrams and Walters 1996, Ramos-Jiliberto 

2003, Vos et al. 2004a). Inducible defenses may thus promote or endanger 

population persistence (Vos et al. 2002, 2004a) and this effect may differ between 

bi- and tritrophic food chains (Vos et al. 2004a). 

Empirical studies on the effects of inducible defenses on population stability 

are rare (Haukioja 1980, Fowler and Lawton 1985, Seldal et al. 1994). Rigorous 

empirical tests of any population level effect of different defense strategies are 

scarce (Underwood and Rausher 2002). No previous empirical study has addressed 

the combined effects of contrasting defense strategies on stability and persistence 

in both bitrophic and tritrophic food chains. Here we experimentally test 

predictions from the theoretical study by Vos et al. (2004a), who analyzed models 

of planktonic food chains. Their study explored the effects of enrichment (a 

bottom-up effect) and consumer mortality rate (a top-down effect) on stability, in 

scenarios with different defense strategies in algae. This analysis (and additional 

unpublished analyses) revealed a large area in a realistic part of parameter space in 

which a bitrophic system monotonically reaches a stable equilibrium when algae 

have induced defenses. In contrast, when algae have no defenses, the system 

exhibits strong population fluctuations, either damped or sustained. This area is 
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characterized by intermediate to high values of algal carrying capacity and 

herbivore mortality (Vos et al. 2004a). Similarly, in an enriched tritrophic food 

chain a monotonic approach of a stable equilibrium is possible when algae have 

induced defenses. This occurs at low mortality rates of the carnivore. In this area of 

parameter space population cycles are expected when algae are undefended, as the 

possibilities for a stable equilibrium are severely restricted.  

These model predictions lead to the following empirical research questions. 1) 

Do enriched food chains without defenses in algae exhibit strong population 

fluctuations, either damped or sustained, and are these fluctuations prevented by 

induced defenses in algae? 2) Are there differential effects of inducible defenses on 

the stability and persistence of bitrophic and tritrophic food chains? 

Vos et al. (2004a) parameterized their food chain models for planktonic 

organisms: carnivorous and herbivorous rotifers and green algae with inducible 

defenses or without defenses. We have experimentally assembled these food chains 

in medium that was either low or high in phosphorus. Here we show that inducible 

defenses prevented strong population fluctuations under eutrophic conditions and 

caused consumer densities to stay further away from zero. Low phosphorus levels 

caused deterministic consumer extinctions. 

Methods 

Food chains were composed of the following organisms: (1) algae: Desmodesmus 

bicellularis Hegewald (Chlorococcales, Chlorophyta) (hereafter: Desmodesmus), 

UTEX LB1359, or Scenedesmus obliquus (Turpin) Kützing (Chlorococcales, 

Chlorophyta) (hereafter: Scenedesmus), UTEX 2630; (2) herbivorous zooplankton: 

Brachionus calyciflorus Pallas (Rotifera) (hereafter: Brachionus); and (3) 

carnivorous zooplankton: Asplanchna brightwellii Gosse (Rotifera) (hereafter: 

Asplanchna). COMBO medium (Kilham et al. 1998) was used in all cultures and 

experiments. 

Species from the genera Scenedesmus and Desmodesmus can be dominant 

phytoplankton species in rivers (Garnier et al. 1995) and shallow lakes (Burchardt 

et al. 2003), where they may co-dominate the plankton with B. calyciflorus 

(Jeppesen et al., 1990). Many Brachionus and Asplanchna species co-occur in 

rivers (Lair et al. 1998, Kim and Joo, 2000) and shallow lakes (K. Jürgens, pers. 

comm.), and the particular species B. calyciflorus and A. brightwelli we used here, 

may co-occur (Gilbert and Waage, 1967) or co-dominate the zooplankton (Oltra et 

al., 2001). 
Scenedesmus forms colonies when exposed to Brachionus-released 

infochemicals. These colonies disintegrate in the absence of this herbivore 
(Verschoor et al. 2005). In contrast, our Desmodesmus strain, that is similar in size 
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Figure 5.1 Population dynamics of planktonic food chains in the high phosphorus 
treatments, with densities expressed as mg C/L. Filled circles denote phytoplankton, open 
circles herbivorous zooplankton (Brachionus) and filled triangles carnivorous zooplankton 
(Asplanchna). a, b, food chains with undefended phytoplankton (Desmodesmus); c, d, food 
chains with inducible defenses in phytoplankton (Scenedesmus); numbers indicate different 
replicates. Zooplankton extinctions are marked with †. 

 

and morphology to undefended Scenedesmus, does not respond in mean particle 

volume to herbivore infochemicals, as most other species in this genus (Verschoor 

et al. 2004a). For Scenedesmaceae between 44 and 757 µm³, the maximum 

ingestion rate of Brachionus decreases with increasing particle volume (Verschoor 

et al. in press). This algal size effect on Brachionus functional responses and the 

presence or absence of herbivore-induced colony formation were used as criteria to 

define algae without defenses (Desmodesmus) and algae with inducible defenses 

(Scenedesmus). 

In the food chain experiments, full medium (50 µmol P/L) and phosphorus-

depleted medium (0.5 µmol P/L) were used. This yielded a design consisting of 2 

algal defense strategies x 2 food chain lengths (bitrophic and tritrophic) x 2 

medium types = 8 treatments. Algae were centrifuged (10 min, 2500 RPM) and 

resuspended twice in either medium type. Zooplankton was added one day after 

algal inoculation. Inoculum densities were 0.5 mg C/L for Scenedesmus and 

Desmodesmus, 1200 ind/L (0.066 mg C/L) for Brachionus and 10 ind/L (0.0039 

mg C/L) for Asplanchna. Triplicates for all eight treatments ran simultaneously in 

1 liter microcosms. Plankton was incubated at 21°±0.5 °C in continuous light 

(120±10 µmol photons [PAR] m-2 s-1) and kept in suspension by gentle shaking 

(90±5 RPM). Every 24 h, 100 mL (10%) of the plankton suspension was sampled 
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and replaced by fresh medium. Phytoplankton and zooplankton samples were 

separated by a 30 µm filter and fixed in 1% of Lugol’s iodine solution. Algal 

subsamples were counted on a particle counter (CASY 1, Schärfe System Gmbh, 

Reutlingen, Germany). Zooplankton samples were counted under a dissecting 

microscope. Experiments lasted 25 days in the full medium and (due to 

zooplankton extinctions) 20 days in the P-depleted medium. 

Densities of the different populations in time were analyzed for differences in 

minima, coefficients of variation (CV) and maximum amplitude (10log 

[maximum/minimum]). These parameters were calculated excluding the first 6 

days, to prevent an over-representation of the initial transient phase. Because of 

heteroscedasticity and non-normality, the Scheirer-Ray-Hare extension of the 

Kruskall-Wallis test was used (Sokal and Rohlf 1995). For carnivore densities we 

used the Mann-Whitney U-test to compare food chains with inducible or no 

defenses in algae. 

Results 

In the high phosphorus treatment with undefended algae (Desmodesmus), we 

observed maximum amplitudes of two to four orders of magnitude in zooplankton 

population densities (Fig. 5.1a, b). In contrast, in high phosphorus treatments with 

inducible defenses (Scenedesmus), amplitudes typically spanned less than one 

order of magnitude (Fig. 5.1c, d). The initially strong fluctuations on undefended 

algae damped during the course of the experiment. In the inducible defense 

treatment, a stable equilibrium was approached rapidly and almost monotonically. 

The observed contrast in dynamics was highly replicable and similar for bitrophic 

and tritrophic food chains. In the high phosphorus treatment with undefended algae 

the carnivore Asplanchna went extinct in one replicate, after a very low minimum 

in the herbivore Brachionus (Fig. 5.1, b2).  

Compared to food chains with inducible defenses in algae, food chains with 

undefended algae had significantly lower minimum densities of herbivores, (P = 

0.0040), but not of carnivores (P = 0.1266). Food chains with undefended algae 

had higher CVs for the biomass densities of all trophic levels (algae and herbivores 

P = 0.0040, carnivores P = 0.0495) and higher maximum amplitudes (algae P = 

0.0163, herbivores P = 0.0040, carnivores P = 0.0495). Neither food chain length, 

nor its interaction with defense strategy had a significant effect on any of these 

variables. 

Both undefended Desmodesmus and Scenedesmus algae with inducible 

defenses initially showed fluctuations in particle size following their transfer from 

continuous cultures to the microcosms. On days six and seven of the bitrophic
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Figure 5.2 An example of algal size dynamics in terms of mean particle volumes in 
relation to herbivore densities in the bitrophic high phosphorus treatment, with 
Scenedesmus and Desmodesmus in the left and right panels respectively. Day 6-14 is the 
period with most distinctly contrasting herbivore dynamics. Filled circles denote mean 
particle volumes (MPV, µm3), open circles represent herbivore densities (no./mL). 

 

experiment both species had reached similar sizes, around 50 µm3, as can be seen 

in the example in Fig. 5.2. Brachionus in the Scenedesmus treatment first increased 

in numbers to reach a density of 78 rotifers per mL on day 8. Subsequently 

densities slightly decreased and increased again to reach a regime of densities that 

varied around a mean of 56 herbivores per mL (Fig. 5.2, left panel). These changes 

in herbivore densities were followed by similar changes in algal particle size, all 

with a delay of about two days. Scenedesmus size reached a maximum of 175 µm3 

on day 13 (Fig. 5.2), and then decreased to fluctuate around a mean of 104 µm3 

during the rest of the experiment. Sizes of the undefended algae remained similar 

throughout the experiment, with an average of 59 µm3 (range 41-88 µm3; Fig. 5.2, 

right panel). Desmodesmus thus did not show major changes in particle size in 

response to the wild population fluctuations of its herbivore (Fig. 5.2, right panel). 

In the low phosphorus treatments, both herbivorous and carnivorous 

zooplankton went extinct in all replicates, while the algae grew to carrying 

capacity (Fig. 5.3). Herbivores in food chains with undefended algae went through 

a cycle with a very deep trough before going extinct (Fig. 5.3a, b). In the treatment 

with inducible defenses herbivores went extinct more gradually, without a clear 

oscillatory tendency (Fig. 5.3c, d). 
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Figure 5.3 Population dynamics of planktonic food chains in the low phosphorus 
treatments, with densities expressed as mg C/L. Symbols are used as in Fig. 5.1. 

Discussion 

We showed strong population fluctuations that spanned several orders of 

magnitude in enriched food chains with undefended algae (Fig. 5.1a, b). In 

contrast, such strong fluctuations were absent in food chains with inducible 

defenses in algae (Fig. 5.1c, d). Particle sizes in this treatment were more variable 

(Fig. 5.2) due to variation in the number of cells per colony. This prey 

heterogeneity may have contributed to food chain stability in the induced defense 

treatment, see Abrams and Walters (1996) and Vos et al. (2004a). Similar 

stabilizing heterogeneities include differential predator swimming speeds 

(Luckinbill 1973), the presence of prey size refuges (Balčiūnas and Lawler 1995), 

and differential edibility of different algal prey species (McCauley et al. 1999, 

Persson et al. 2001). 

Our experimental results are qualitatively in concordance with the model 

prediction that enriched food chains with induced defenses in algae are likely to 

monotonically approach a stable equilibrium. In the same part of parameter space 

the model predicts bitrophic food chains with undefended algae to show damped or 

sustained population cycles (Vos et al. 2004a, Vos unpublished). Indeed, our 

experimental treatment with undefended algae resulted in initially strong, but 

damped population fluctuations. Model analysis suggests that this damping 

occurred intrinsically, because the equilibrium was a stable focus (see Vos et al. 

2004a, 2005). Another stabilizing factor, such as the formation of detrital 

aggregates, could also explain stabilization towards the end of the experiment. 
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Such a factor is likely to have contributed to the observed damping, as we do not 

theoretically expect damping towards a stable focus in a highly enriched tritrophic 

system with undefended algae (Vos et al. 2004a).  

Both in nature and in experiments a variety of mechanisms might contribute to 

stability and persistence. We used the bitrophic version of the model by Vos et al. 

(2004a, 2004b), to evaluate four alternative mechanisms. In these model scenarios 

defenses were fixed, i.e., not inducible. We took undefended algae that cycled with 

their herbivores as a reference, using the parameter values of Vos et al. (2004a, 

2004b). From there we decreased (a) the attack rate on algal prey and (b) algal 

growth rate, and increased (c) the handling time on algal prey and (d) the 

conversion efficiency from algal to herbivore biomass. We found that differences 

in growth rate between algal strains were unlikely to cause differences in stability 

of the plant-herbivore system. However, the above mentioned changes in handling 

time, attack rate and conversion efficiency all had a stabilizing effect. It is 

important to note that these characteristics, that we can consider to be part of fixed 

defense strategies, did not fundamentally resolve the paradox of enrichment. Their 

stabilizing effect is restricted in the sense that a higher level of enrichment is 

required to destabilize the system. In contrast, inducible defenses may prevent a 

paradox of enrichment altogether (Vos et al. 2004a). However, in experimental 

terms this evaluation implies that a strain with fixed defenses may be stable, and an 

undefended strain unstable, at a given level of enrichment. This can also be seen in 

Vos et al. (2004a): fig. 2 and means that future experimental work should elaborate 

on the dynamic consequences of fixed as opposed to inducible defenses.  

Our main point here is that differences in algal defense strategies could explain 

the large and highly replicable differences in population dynamics we observed in 

this experiment. Work by Van der Stap et al. (2006) in batch systems on other algal 

strains shows that such population level effects of defense strategies are not a mere 

effect of species or strain identity. 

The Brachionus strain used here exhibits induced defenses (spine formation) 

against its carnivore Asplanchna. These induced defenses at the herbivore level did 

not prevent strong population fluctuations, while induced defenses at the plant 

level did (Fig. 5.1). This is also predicted by the model of Vos et al. (2004a, 

2004b). If defense inducibility in herbivores is removed from this model, very little 

changes in terms of stability occur. However, if defense inducibility in plants is 

removed from the model, one immediately regains the paradox of enrichment (M. 

Vos, unpublished analyses). 

Both herbivores and carnivores went extinct in all low phosphorus replicates 

(Fig. 3b, d). At first sight, the strong declines in herbivore densities seem odd, 

given the abundance of algal food. We attribute herbivore extinctions to a 
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progressively decreasing food quality of the algae, due to phosphorus depletion. 

With the strains used, food quality effects on B. calyciflorus population growth 

already occur at moderate P-limitation of Scenedesmus (atomic C:P ratios 600-650, 

Jensen and Verschoor 2004), whereas algal C:P ratios in a similar population 

dynamics experiment under identical abiotic conditions attained values between 

1500-2500 (Van der Stap and Verschoor unpublished). The consistent extinctions 

of herbivores and carnivores at high carbon but low phosphorus levels are in close 

agreement with predictions from various stoichiometric models (Andersen 1997, 

Loladze et al. 2000, Grover 2003). 

Inducible defenses are one of the individual level mechanisms that are 

predicted to have major effects at higher levels of ecological organization, in terms 

of trophic structure (Abrams and Vos 2003, Vos et al. 2004b), persistence (Vos et 

al. 2002, 2004a), resilience (Vos et al. 2005) and stability (Abrams and Walters 

1996, Ramos-Jiliberto 2003, Vos et al. 2004a). Here we show that inducible 

defenses in algae are indeed capable of preventing strong population fluctuations. 

This is important because strong population fluctuations with low minimum 

densities endanger the persistence of species at higher trophic levels. Thus, defense 

strategies in prey species contribute to the probabilities of persistence and 

extinctions in higher-level consumers. 
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Chapter 6 

Induced defenses in herbivores and plants 

differentially modulate a trophic cascade 

Abstract 

Inducible defenses are dynamic traits that modulate the strength of 

both plant-herbivore and herbivore-carnivore interactions. 

Surprisingly few studies have considered the relative contributions of 

induced plant and herbivore defenses to the overall balance of 

bottom-up and top-down control. Here we compare trophic cascade 

strengths using replicated two-level and three-level plankton 

communities in which we systematically varied the presence or 

absence of induced defenses at the plant and/or herbivore levels. Our 

results show that a trophic cascade, i.e., a significantly higher plant 

biomass in three-level than in two-level food chains, occurred 

whenever herbivores were undefended against carnivores. Trophic 

cascades did not occur when herbivores exhibited an induced defense. 

This pattern was obtained irrespective of the presence or absence of 

induced defenses at the plant level. We thus found that herbivore 

defenses, not plant defenses, had an overriding effect on cascade 

strength. We discuss these results in relation to variation in cascade 

strengths in natural communities. 

 

 
Van der Stap, I., M. Vos, A.M. Verschoor, N.R. Helmsing and W.M. Mooij. Induced 

defenses in herbivores and plants differentially modulate a trophic cascade. Ecology in 
press. 
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Introduction 

Debates on trophic cascades have moved on from the original question of whether 

communities are ‘green’ because of complete top-down control (Hairston et al. 

1960, Oksanen and Oksanen 2000) to investigations of the balance between 

bottom-up and top-down control across a variety of ecosystems (Brett and 

Goldman 1996, Schmitz et al. 2000, Halaj and Wise 2002, Shurin et al. 2002, 

2006). Ecologists have also strongly focused on the biotic and abiotic factors that 

explain variation in cascade strengths within certain types of ecosystems (Power et 

al. 1992, Polis and Strong 1996, Chase 2003). Potential explanations for variation 

in the strength of community-wide trophic cascades include predator species 

diversity (Finke and Denno 2004, Bruno and O'Connor 2005, Byrnes et al. 2006, 

Snyder et al. 2006), herbivore species diversity (Schmitz et al. 2000), intraguild 

predation (McCann et al. 1998, Hart 2002), refuges against intraguild predation 

(Finke and Denno 2002, 2006) and heterogeneity in edibility within trophic levels 

(Leibold 1989, Power et al. 1992, Bell 2002, Vos et al. 2004b).  

The importance of variation in (induced) defenses and thus edibility as 

modulators of top-down control has been recognized for a long time (Murdoch 

1966, Power et al. 1992, Strong 1992, Polis and Strong 1996, Bell 2002, Vos et al. 

2002, 2004b, Schmitz et al. 2004). Under a regime of increasing predation, species 

that differ in their defense levels may change in relative abundance (Abrams and 

Vos 2003), or species turnover may change community composition altogether 

(Leibold et al. 1997, Chase et al. 2000). Through these community processes, plant 

and herbivore levels as a whole may change in terms of their edibility, even when 

defense levels of each of the comprising species are fixed.  

Traits of individuals are rarely entirely fixed in nature. Phenotypic plasticity is 

in fact ubiquitous (Tollrian and Harvell 1999, Peacor and Werner 2000, Agrawal 

2001), and defensive responses in both plants and herbivores often seem tuned to 

consumer density and thus predation risk (Schmitz et al. 2004, Vos et al. 2004a, 

2004b). Consumers often seem to balance foraging activity and food intake against 

predation risk (e.g., Anholt et al. 2000). Carnivore-mediated reduction in herbivore 

feeding has two effects that differentially affect cascade strength. It may decrease 

carnivory, but it also decreases the consumption of plant biomass by “inactive” 

herbivores (Abrams 1984). In principle, this allows carnivores to have weak or 

strong, positive or negative effects on plant biomass, depending on the involved 

trade-offs (Schmitz et al. 2004). Nonetheless, whenever herbivores substantially 

reduce their feeding activity in the presence of carnivores, this may result in 
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reduced plant damage levels, and even in increased plant growth or biomass. This 

would entail a behaviorally mediated trophic cascade (Schmitz et al. 2004). 

Not all defenses, however, involve a reduced resource intake. Reduced feeding 

activity is a typical pre-detection or predator avoidance defense of otherwise 

vulnerable species. Species may also combine several defenses that interfere with 

different parts of the predation cycle, or may entirely rely on defenses that prevent 

ingestion (the final stage of the predation cycle). Such defenses should have 

qualitatively different effects on trophic cascades. For many plant and herbivore 

species, avoiding encounters with, and detection by, consumers is not an option. 

This may be the case because of a sedentary or planktonic (drifting) life style or for 

a suite of other reasons that require a reliance on defenses that interfere with the 

final stages of the predation cycle. Such defenses may include defensive colony 

formation in algae and the formation of defensive spines in zooplankton that hinder 

or prevent their ingestion by herbivores and gape-limited carnivores, respectively. 

Many defenses, including other changes in morphology, honest signals of strength, 

toxicity or noxiousness, as well as flight or autotomy and other evasion tactics 

following encounters with predators are part of this defense category. None of 

these are likely to involve substantial costs in terms of reduced resource intake. 

Defenses in this category are not restricted to any particular ecosystem. They affect 

predation in freshwater, marine, and terrestrial food webs. 

Terrestrial plants may also show indirect defenses, as many of these attract the 

parasitoids and carnivores of their insect herbivores through the emission of 

volatiles, after herbivore damage has started to occur (Vet and Dicke 1992, Dicke 

and Vet 1999, Vos et al. 2001, 2006). In the case of terrestrial plants, we can 

generally state that their defenses are unlikely to involve reduced nutrient uptake as 

a trade-off. 

Post-encounter defenses may occur in plants or herbivores, or in both of these, 

in any particular food chain within a wider community. These defenses have 

important implications for the strength of trophic cascades and could entirely block 

the transmission of carnivore effects to the plant level. For example, when such 

defenses are strong in herbivores, this would make them independent of the top-

down effects of secondary carnivores, whose role has been considered of major 

importance in differentiating pelagic communities from terrestrial ones (Hairston 

and Hairston 1997).  

Here we evaluate the effects of induced defenses that act during the later stages 

of the predation cycle, i.e., defenses other than those that reduce activity levels. We 

focus on the effects of these defenses on the strength of trophic cascades using 

replicated two- and three-level planktonic food chains. We employ simple 

communities in order to disentangle the relative contributions of induced defenses 
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Figure 6.1 A measure for plant defense: particle volumes of undefended algae 
(Desmodesmus) and of algae with inducible defenses (Scenedesmus) in two- and three-level 
food chains (bi- and tritrophic) with undefended herbivores (Brachionus rubens). Shown 
are means (+SE) of three replicates, with each of these means being the particle volume 
averaged over the total duration of the experiment. Particle volumes differed significantly 
between algal strains (Mann-Whitney U test, P < 0.01). 

 

in plants and herbivores, not because we think that real communities are simple 

(see Discussion in chapter 6). At the plant level, we use green algae from the 

Scenedesmaceae family, with Desmodesmus bicellularis being undefended while 

Scenedesmus obliquus forms defensive colonies in the presence of herbivorous 

zooplankton (Fig. 6.1; Verschoor et al. 2004a, see also Verschoor et al. 2004b: Fig. 

2). At the herbivore level we use Brachionus rotifers, with B. rubens being 

undefended while B. calyciflorus forms defensive spines in the presence of 

carnivorous Asplanchna rotifers (Fig. 6.2; Gilbert 1966). At the carnivore level we 

use the gelatinous rotifer A. brightwellii. A previous experiment using a subset of 

these species led to the observation that induced defenses in algae had a major 

effect in terms of damping population fluctuations in food chains (Verschoor et al. 

2004b). Nonetheless, algal defenses seemed to have little effect in terms of 

affecting algal biomass. This in turn led to our hypothesis that herbivore defenses 

in this data set had relatively strong effects and thus obscured the effect of plant 

defenses. We therefore performed a new experiment with an herbivorous rotifer 

without inducible defenses (B. rubens) in the same experimental set-up to 

investigate how the presence or absence of induced defenses in herbivores and 

plants affects the strength of trophic cascades. 
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Figure 6.2 Picture of the herbivore Brachionus calyciflorus with induced postero-lateral 
spines that protect the rotifer from ingestion by the carnivorous rotifer Asplanchna. The 
presence of Asplanchna caused the percentage of defended B. calyciflorus herbivores to 
rapidly increase to more than 90% in the first three days. This high defense level was 
maintained during the entire experiment. Photo credit: N.R. Helmsing. 

Material and methods 

Food chains in the present experiment were composed of the following organisms: 

(1) algae (often referred to as plants) comprising the undefended species 

Desmodesmus bicellularis Hegewald (Chlorococcales, Chlorophyta) strain UTEX 

LB1359, or inducible defended Scenedesmus obliquus (Turpin) Kützing 

(Chlorococcales, Chlorophyta) strain UTEX 2630; (2) undefended herbivorous 

zooplankton Brachionus rubens Ehrenberg (Rotifera); and (3) carnivorous 

zooplankton Asplanchna brightwellii Gosse (Rotifera). COMBO medium (Kilham 

et al. 1998) was used in all cultures and experiments. This system mimics the one 

studied by Verschoor et al. (2004b), but with the important difference that the 

herbivore in our study is undefended, whereas Verschoor et al. (2004b) used an 

inducible defended herbivore (B. calyciflorus). The rotifer B. rubens contains less 

carbon per individual than B. calyciflorus (Rothhaupt 1993), so we adjusted the 

initial densities of B. rubens in order to have initial carbon concentrations as in the 

experiment of Verschoor et al. (2004b). 

The experiment was set up using a factorial design consisting of two algal 

defense strategies x two food chain lengths (two- and three-level) making four 

treatments. Algae were centrifuged for 10 min at 2500 rpm and resuspended twice 

in full medium containing 50 µmol P/L. Zooplankton was added one day after 
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algal inoculation. Inoculum densities were 0.5 mg C/L for Scenedesmus and 

Desmodesmus, 2200 individuals/L (0.121 mg C/L) for Brachionus and 10 

individuals/L (0.0039 mg C/L) for Asplanchna. Three replicates of all treatments 

ran simultaneously in 1-L microcosms for 14 days. Plankton was incubated at 21° 

(minimum 20.5°C, maximum 21.5°C) in continuous light (120 µmol photons 

[PAR]·m-2·s-1 [minimum 110, maximum 130 photons·m-2·s-1]) and kept in 

suspension by gentle shaking (90 rpm [minimum 85 rpm, maximum 95 rpm]). 

Every 24 hours, 100 mL (10%) of the plankton suspension was sampled and 

replaced by fresh medium. Phytoplankton and zooplankton samples were separated 

by a 30-µm filter and fixed in 1% of Lugol’s iodine solution. Algal subsamples 

were measured on a particle counter for the number of particles (unicells or 

colonies) and particle volume (CASY 1, Schärfe System Gmbh, Reutlingen, 

Germany). Particle volumes within each replicate were averaged over time and 

differed significantly between algal strains (Fig. 6.1; Mann-Whitney U, P<0.01). 

Zooplankton samples were counted under a dissecting microscope. 

The effect sizes of predator manipulations were measured as (1) the log of the 

ratio of average plant densities in the presence and absence of carnivores and (2) 

the log of the ratio of average herbivore densities in the presence and absence of 

carnivores. These measures are also referred to as cascade strength. Biomass levels 

of algae and herbivorous rotifers were determined by taking the average biomass 

over time for each replicate. The effects of algal strain (defenses present or absent) 

and number of trophic levels on the biomass were analyzed using factorial 

ANOVA. Prior to analysis, data were tested for homogeneity of variances using 

Cochran’s C test. Biomasses at each of the different trophic levels were analyzed 

using Tukey hsd post-hoc tests. Statistical analyses were performed using 

STATISTICA version 7.1. (StatSoft, Tulsa, Oklahoma, USA).  

We evaluated our results within this study in relation to those from a previous 

study, performed in exactly the same set-up and conditions, that used the inducible 

defended herbivore B. calyciflorus (population dynamics data published in 

Verschoor et al. 2004b; not previously analyzed for effects of defenses on trophic 

cascade strength). Within three days following inoculation with carnivorous 

Asplanchna, 90-100% of the B. calyciflorus population showed induced spines. 

Herbivore defense levels remained this high throughout the experiment. 

Undefended individuals had essentially no spines (lengths of 0-4 µm), whereas 

defended individuals had spines of 13-70 µm, with a mean of about 35 µm (n = 

240). Statistical comparisons were only made within each of the two data sets. For 

the analysis of the B. calyciflorus data set we again used cascade strength as 

defined above and average biomass levels over days 1 to 14. 
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Figure 6.3 Effect of inducible defenses on the strength of trophic cascades in food chains 
differing in the presence or absence of inducible defenses in (a) plants (algae) and (b) 
herbivores (zooplankton). Cascade strength was measured as (a) log(plant ratio), the mean 
plant biomass in the presence of carnivores divided by the mean plant biomass in the 
absence of carnivores, and (b) log(herbivore ratio), the mean herbivore biomass in the 
presence of carnivores divided by the mean herbivore biomass in absence of carnivores. 
Shown are means (with SE) of three replicates.  
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Table 6.1 Summary of ANOVA testing the differences in biomass of all trophic levels 
(plants, herbivores and carnivores) among plants (algal strains), food chain length (two- or 
three-level) and the interactions between algal strain and food chain length.  
 

Effects df MS F P 

Food chains with undefended herbivores 
Plants (algae)     

Algal strain 1 0.759 0.2382 0.64 
Food chain length 1 386.6 121.4 <0.001 
Strain x food chain length  1 29.34 9.209 <0.05 
Error 8 3.186   

Herbivore (B. rubens)     

Algal strain 1 0.5375 77.67 <0.001 
Food chain length 1 2.231 322.5 <0.001 
Strain x food chain length 1 0.3134 45.29 <0.001 
Error 8 0.0069   

Carnivore (Asplanchna)     

Algal strain 1 0.0184 59.70 <0.01 
Error 4 0.0003   

Food chains with inducible defended herbivores 
Plants (algae)     

Algal strain 1 1414 128.3 <0.001 
Food chain length 1 3.257 0.2954 0.60 
Strain x food chain length  1 0.006 0.0006 0.98 
Error 8 11.02   

Herbivore (B. calyciflorus)     
Algal strain 1 0.1861 0.5215 0.49 
Food chain length 1 8.401 23.54 <0.01 
Strain x food chain length 1 0.0732 0.2050 0.66 
Error 8 0.3568   

Carnivore (Asplanchna)     
Algal strain 1 0.0005 0.2427 0.65 
Error 4 0.0021   
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Results 

Presence or absence of a trophic cascade 

A strong trophic cascade was present when neither plants nor herbivores were 

defended, as indicated by the largest difference between plant biomass in absence 

and presence of carnivores, resulting in the highest positive log plant ratio value 

(Fig. 6.3a). Cascade strength decreased when plants had an induced defense, but 

only when herbivores were undefended (Fig. 6.3a). The trophic cascade 

disappeared altogether when herbivores had an induced defense, irrespective of 

whether plants were defended or not, as indicated by log plant ratio values close to 

zero (Fig. 6.3a). As expected, herbivore biomass was strongly negatively affected 

by carnivores when herbivores were undefended, and only weakly affected when 

herbivores had an induced defense (Fig. 6.3b). 

These results are quantified using ANOVA (Table 6.1). When herbivores were 

undefended, food chain length significantly affected herbivore biomass (ANOVA, 

P < 0.001) and plant biomass (ANOVA, P < 0.001). In contrast, when herbivores 

had induced defenses, food chain length still affected herbivore biomass (ANOVA, 

P < 0.01), but plant biomass was no longer affected (ANOVA, P = 0.60).  

The biomass of the different trophic levels is given in Fig. 6.4, left panels, 

showing a pattern of strong top-down control when herbivores were undefended. In 

this case we observed that the presence of carnivores decreased herbivore biomass 

(Tukey’s hsd test, all P values ≤ 0.001) and increased plant biomass, both when 

plants were undefended (Tukey’s test, P < 0.001) and when they had an induced 

defense (Tukey’s test, P < 0.01).  

The alternative case, with induced defenses in herbivores, shows a pattern of 

weaker top-down effects that did not make it to cascade down to the plant level 

(Fig. 6.4, right panels). Here we observed that carnivores caused a marginally non-

significant decrease in herbivore biomass when plants were undefended (Tukey’s 

test, P = 0.057) and a marginally significant decrease in herbivore biomass when 

plants had an induced defense (Tukey’s test, P = 0.023). However, the addition of 

carnivores to a two-level food chain had no discernable effect on plant biomass, 

whether these plants were defended or not (ANOVA, P = 0.60, Fig. 6.4f).  

Other biomass patterns 

We observed three striking patterns in biomass distribution apart from the absence 

or presence of a trophic cascade. First, carnivore biomass was significantly lower 

in a food chain based on algae with an induced defense than in a food chain based 

on undefended algae, but only when herbivores were undefended (ANOVA, P < 



Chapter 6 

82 

0.01, Table 6.1, Fig. 6.4a), and not when herbivores were defended (ANOVA, P = 

0.65, Table 6.1, Fig. 6.4b). Second, the undefended herbivore had a lower biomass 

in two-level food chains with inducible defended plants than in two-level food 

chains with undefended plants (Tukey’s test, P < 0.001, Fig. 6.4c). This effect did 

not occur in the defended herbivore (Fig. 6.4d). Third, plant biomass was 

significantly lower in a food chain based on algae with an induced defense than in 

a food chain based on undefended algae, but only when herbivores had an induced 

defense (ANOVA, P < 0.001, Table 6.1, Fig. 6.4f), and not when herbivores were 

undefended (ANOVA, P = 0.64, Table 6.1, Fig. 6.4e). 

Discussion 

Trophic cascades 

Many biotic and abiotic factors cause cascade strengths to vary in nature. Top-

down effects may come as trophic trickles or as strong trophic cascades and these 

top-down effects may be food chain specific or community wide. Nonetheless, in 

all of these cases we can ask how the traits of plants and herbivores within these 

communities contribute to overall effect sizes. 

In the present study we showed that herbivores with induced defenses caused a 

complete block of top-down carnivore effects on plants. In contrast, when 

herbivores were undefended this allowed a strong trophic cascade to exist. In this 

case the addition of a carnivore to a two-level system resulted in herbivore 

suppression and increased plant biomass. The fundamental mechanism underlying 

the results of this study with defended herbivores is that herbivore defenses 

effectively prevented ingestion by carnivores while not limiting the herbivore’s 

intake of algal food. If, in contrast, a carnivore-induced defense would reduce the 

herbivore’s feeding rate on plants, this could allow plant biomass to increase. In 

the latter case, a behavior-mediated trophic cascade would occur. We thus have the 

somewhat counterintuitive situation that herbivore defenses may either prevent or 

facilitate a trophic cascade, depending on whether there is a trade-off between the 

defense and the herbivore’s food intake. Defenses that act early in the predation 

usually involve such a trade-off, while many defenses that act later on in the 

predation cycle hardly affect resource intake rates. The system with Asplanchna as 

a carnivore and spined B. calyciflorus as a defended herbivore is an example of the 

latter situation. 

In this model system, herbivore defenses were more efficient in preventing 

ingestion by carnivores than algal defenses were in preventing ingestion by 

herbivores. In principle, a highly efficient plant defense could similarly buffer top-

down effects on its biomass by species higher up in the food web. Cascade strength 
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Figure 6.4 Biomass of all trophic levels, with carnivores (top row), herbivores (middle 
row) and plants (bottom row). The left panels show two- and three-level food chains with 
either undefended or inducible defended plants and an undefended herbivore, the panels to 
the right show these food chains with the inducible defended herbivore (based on data from 
Verschoor et al. [2004], not previously analyzed for cascade strength). Shown are means 
(+SE) of three replicates. Different letters within panels indicate significant differences 
among treatments (Tukey’s hsd test after ANOVA, P < 0.05). 
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is often observed to attenuate at the plant-herbivore interface, both in aquatic (Brett 

and Goldman 1996) and in terrestrial (Schmitz et al. 2000) communities. Our 

results show that induced herbivore defenses alone can cause such an attenuation 

of cascade strength at the herbivore-carnivore interface. We showed this in a 

simple model system using food chains that are otherwise highly comparable, e.g., 

with respect to their stoichiometry. 

Natural communities are complex and diverse, and as our study shows, not all 

herbivore species are equally defended. However, effective induced defenses 

occurring in a variety of herbivore species within a community could substantially 

dampen top-down control. In the present study, we worked with a limited number 

of species, i.e., we analyzed data from a food chain with a single herbivore species 

that represented the undefended defense type and related these results to data from 

a food chain with a single defended herbivore species. The extent to which our 

results can be extended to community-wide trophic cascades depends on the ways 

in which dominant plant and herbivore species respond to multispecies complexes 

of their consumers. Many defenses, such as toxins and spines, are likely to be 

effective against a wide variety of consumer species. This is also the case for 

reduced activity defenses such as described by Abrams (1984) and Schmitz et al. 

(2004). Since reduced activity and defenses that act later on in the predation cycle 

can have opposite effects on cascade strength, the community-wide effects of 

herbivore defenses will depend on the relative abundance and importance of 

different herbivore species employing these different kinds of defenses. This 

implies that analyses of cascade strength need to take into account how herbivores 

defend themselves against their consumers. It similarly means that “herbivore 

diversity” cannot be a simple variable in analyses of top-down and bottom-up 

control. 

Other biomass patterns 

We found that both herbivore biomass in two-level food chains and carnivore 

biomass in three-level food chains were lower when these food chains were based 

on inducible defended algae (as compared to chains based on undefended algae, 

see Fig. 6.4a, c). This effect of plant defenses on the accumulation of biomass 

higher up in the food chain only occurred when herbivores were undefended. This 

effect can be understood from the fact that the undefended herbivore B. rubens is 

smaller than the defended herbivore B. calyciflorus and is thus more affected by 

defensive colony formation in algae. B. rubens has previously indeed been shown 

to have a lower ingestion rate than B. calyciflorus on large algae (Rothhaupt 1990). 

In food chains with defended herbivores, plant biomass was significantly 

higher when these chains were based on undefended algae. This was the case in 
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both two-level and three-level food chains (Fig. 6.4f). This biomass pattern can be 

understood from the underlying pattern in population dynamics. Both two-level 

and three-level food chains showed highly fluctuating population densities when 

these were based on undefended algae, while those based on inducible defended 

algae monotonically approached a stable equilibrium (Verschoor et al. 2004b). The 

high densities of undefended algae we observed are related to low herbivore 

densities that occurred during these population fluctuations. This makes clear that 

any analysis of trophic cascade strength has to take into account whether the 

underlying population dynamics are stable or cyclic, because “measured cascade 

strength” will be affected by the duration of the experimental period in systems 

that show cyclic dynamics in nature. Short-term experiments (relative to the 

organisms’ life and population cycles) would be especially vulnerable to sampling 

either peaks or troughs of population cycles. However, we emphasize here that our 

main result in this paper, the presence or absence of a trophic cascade depending 

on the presence or absence of herbivore defenses, was independent of population 

stability: The effect of herbivore defenses on cascade strength occurred no matter 

whether the algal population was undefended or inducibly defended, and thus also 

irrespective of whether population fluctuations occurred or were absent.  

Conclusion 

We conclude that both the presence and the type of herbivore defenses can be 

important in determining the relative effects of bottom-up and top-down control, 

and thus the strength of trophic cascades. Herbivore defenses strongly inhibited 

top-down control by carnivores in our model system, thereby effectively 

preventing the trophic cascade that was strongly present when herbivore defenses 

were absent. Our results make clear how herbivore defenses that prevent ingestion 

by carnivores (with no trade-off in the herbivore’s rate of plant consumption) will 

effectively attenuate trophic cascades at the herbivore-carnivore interface. This 

study indicates the importance of discriminating between herbivore defenses that 

act late in the predation cycle (e.g., by preventing ingestion through morphological 

changes) and those that act early on in the predation cycle (e.g., by preventing 

detection through reduced feeding activity), as these may have qualitatively 

different effects on cascade strengths in natural communities. The predation cycle 

is a fundamental aspect of feeding in any kind of food web, whether it is part of a 

freshwater, marine or terrestrial ecosystem. In all of these systems, herbivore 

defenses may counteract predation during early and/or later stages of this cycle, 

with or without trade-offs on herbivory rates. The differential effects of these 

different kinds of defenses should be of importance to any comparison of trophic 

cascade strengths within and between ecosystems in nature.  
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Chapter 7 

Inducible defenses, competition and shared predation 

in planktonic food chains 

Abstract 

Ecologists have debated the role of predation in mediating the 

coexistence of prey species. Theory has mainly taken a bi-trophic 

perspective that excludes the effects of inducible defenses at different 

trophic levels. Our aim was to investigate how inducible defenses at 

different trophic levels affect the possibilities for predator-mediated 

coexistence in replicated experimental plankton communities. In 

particular, we analyzed how the presence or absence of inducible 

defenses in basal prey affected the outcome of competition between 

an inducible defended and an undefended herbivore in the presence or 

absence of carnivory. We found the undefended herbivore to be a 

superior competitor in the absence of predation. This outcome was 

reversed in the presence of a shared carnivore: Populations of the 

undefended herbivore strongly declined. In food chains with 

undefended algal prey this herbivore became undetectable for most of 

the duration of the experiment. This as opposed to food chains with 

inducible defended algae where the undefended herbivore also 

crashed to low densities, but it could still be detected for most of the 

time. In this case, the carnivore failed to reach high densities and it 

had limited its top-down control on the two competing herbivores. We 

discuss our results in terms of the consequences of inducible defenses 

for coexistence as opposed to exclusion of one of the herbivores under 

shared predation. 

 

 
Van der Stap, I., M. Vos, R. Tollrian and W.M. Mooij. Inducible defenses, competition 

and shared predation in planktonic food chains. Submitted. 
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Introduction 

Communities are structured by ecological mechanisms such as predation (Holt 

1977, Sih et al. 1985, Kerfoot and Sih 1987) and competition for resources (Tilman 

1982). Predation and competition may interact in a variety of ways (Chase et al. 

2002). A classical view is that predators can allow for the coexistence of prey 

species that would not be able to coexist under competition alone. This idea of 

‘keystone predation’ derives from seminal work by Paine (1966) who 

experimentally demonstrated that preferential predation on a dominant competitor 

mediated its coexistence with several subdominant species. Coexistence may 

similarly be obtained when parasites preferentially attack host species that are 

dominant competitors, for example within plant communities (e.g., De Deyn et al. 

2003). Keystone predation in the wider sense could thus represent one of the 

ecological mechanisms that may allow the persistence of diverse species 

assemblages in nature.  

However, several factors complicate the general applicability of predator-

mediated coexistence as a principle that promotes diversity. These factors 

determine whether the effect of predators on the coexistence of competitors is 

absent, positive or negative (Chase et al. 2002). One of these factors is productivity 

(Leibold 1996). Using a simple model Leibold (1996) demonstrated that a 

vulnerable prey will exclude a resistant prey at a low nutrient level that just 

supports the predator population. At very high productivity the predator drives the 

less resistant species extinct, allowing the more resistant prey to dominate. In 

between these two levels of productivity predator-mediated stable coexistence may 

occur (Leibold 1996). In a single unreplicated trial Halbach (1969) observed 

reversal of the dominant species when he added a predator to two competing 

herbivores. The competitively superior, but vulnerable B. rubens went extinct 

shortly after introduction of the predator, and the more resistant B. calyciflorus 

lived together with the predator Asplanchna for a longer period. This observed 

predator-mediated extinction of the vulnerable species matches the model 

predictions (Leibold 1996) for a system in which nutrient levels are high. 

A second factor that may prevent the general applicability of predator-

mediated coexistence is the importance of population fluctuations in nature. Such 

fluctuations may occur as transient dynamics following environmental 

perturbations; they may occur through external (e.g., seasonal) forcing, or they 

may exist as limit cycles. Cyclic dynamics have been shown to severely limit the 

possibilities for predator-mediated coexistence (Abrams 1999). The theoretical 

studies by Leibold (1996) and Abrams (1999) both bear relevance to the 
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possibilities for predator-mediated coexistence in nature, because both stable and 

cyclic dynamics are quite common in the field. In an extensive study in which 

about 700 long-term time series were analyzed, ca. 30 percent of the studied field 

populations showed cyclic dynamics (Kendall et al. 1998). It is somewhat 

surprising that the majority of time series did not reveal cyclic dynamics, as we 

know from a great body of laboratory experiments that many predator-prey 

interactions are unstable, especially in enriched and simplified laboratory 

environments (Huffaker et al. 1963, Luckinbill 1973, Fussmann et al. 2000). One 

of the reasons for such instability is the fact that many consumer species have Type 

II functional responses that have a destabilizing effect on the predator-prey 

interaction. Apparently, a variety of ecological mechanisms may act to stabilize 

predator-prey interactions in nature. Our point here is that such stabilizing 

mechanisms are not only important for the persistence of specific predator-prey 

systems, they also have significant implications for the role of keystone predation 

as a mechanism that promotes diversity. One mechanism that has been predicted to 

stabilize predator-prey interactions in both two-level and three-level food chains is 

the presence of inducible defenses in basal prey (Vos et al. 2004a). 

Experiments have shown that such defenses may dramatically dampen 

population fluctuations in planktonic food chains (Verschoor et al. 2004b). This 

dampening of fluctuations brought minimum population densities further away 

from zero and thus promoted coexistence of species by preventing stochastic 

extinctions (Verschoor et al. 2004b). Here we further hypothesize that such 

induced defenses in basal prey may also affect coexistence by indirectly affecting 

carnivores and their control of competing herbivores. The greater part of existing 

theory on the effects of predation on the outcome of competition has focused on 

simple systems in which only two living trophic levels were considered. Natural 

communities are multi-trophic, which allows complex feedback loops between 

carnivores and plants. We reason that ecological theory should not only consider 

the trade-off between predator resistance and competitive ability in herbivores. 

This trade-off is similarly present in basal prey and this may have profound 

dynamical consequences (Yoshida et al. 2004). 

To test the effects of shared predation on the outcome of competition between 

two herbivores (with and without inducible defenses) we used planktonic 

experimental communities with either undefended or inducible defended algae as 

basal prey. Carnivores were then either absent or added to our replicated alga-

herbivore systems. We incubated these two-level and three-level species 

assemblages in replicated microcosms and evaluated the fate of each species over 

the 30-day duration of the experiment. We evaluate the qualitative outcome of 

competition in each of the four ecological scenarios and interpret the results in 
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terms of the modulating effects of induced defenses in basal prey on the occurrence 

of very low minimum population densities. 

Material and methods 

Culture organisms  

Food chains were composed of the following organisms: (1) algae: Desmodesmus 

bicellularis Hegewald (Chlorococcales, Chlorophyta) UTEX LB1359, or 

Scenedesmus obliquus (Turpin) Kützing (Chlorococcales, Chlorophyta) UTEX 

2630; (2) herbivorous zooplankton: Brachionus rubens Ehrenberg (Rotifera) LMU, 

and Brachionus calyciflorus Pallas (Rotifera) Microbiotests Inc.; and (3) 

carnivorous zooplankton: Asplanchna brightwellii Gosse (Rotifera) LMU 

(hereafter: Asplanchna). COMBO medium (Kilham et al. 1998) was used in all 

cultures and experiments. The herbivorous rotifers B. rubens and B. calyciflorus 

were used as competitors. 

B. calyciflorus exhibits induced defenses, i.e. spine formation, against its 

carnivore Asplanchna (DeBeauchamp 1952, Gilbert and Waage 1967). The rotifer 

B. rubens does not exhibit these inducible morphological defenses. This rotifer has 

a lower carbon content than B. calyciflorus (Rothhaupt 1993). Therefore initial 

density of B. rubens was twice the number of B. calyciflorus.  

S. obliquus forms defensive colonies when exposed to Brachionus-released 

infochemicals (Lürling and Van Donk 1997, Van Donk et al. 1999). These colonies 

disintegrate in the absence of this herbivore (Verschoor et al. 2005). In contrast, 

our D. bicellularis strain, that is similar in size and morphology to non-induced S. 

obliquus, shows no response in particle volume to herbivore infochemicals.  

Methods & sampling  

The design of the food chain experiments consisted of 2 algal defense strategies x 

carnivory or no carnivory (Asplanchna present or absent) = 4 treatments. Algae 

were centrifuged (10 min. at 2500 rpm) and resuspended in full COMBO medium 

(50 µmol P/L). Zooplankton was added one day after algal inoculation. Inoculum 

densities were 0.5 mg C/L for D. bicellularis and S. obliquus, 1000 individuals/L 

(0.055 mg C/L) for B. rubens, 500 individuals/L (0.05 mg C/L) for B. calyciflorus 

and 10 individuals/L (0.0039 mg C/L) for Asplanchna. Three replicates for all four 

treatments ran simultaneously in 1-L microcosms. Plankton was incubated at 

21°±0.5 °C in continuous light (120±10 µmol photons (PAR) m-2 s-1) and kept in 

suspension by gentle shaking on a rotating table (90±5 RPM) for 30 days. Every 24 

h, 100 ml (10%) of the plankton suspension was sampled and replaced by fresh 

medium. Phytoplankton and zooplankton samples were separated by a 30-µm filter 
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and fixed in 1% of Lugol’s iodine solution. Algal subsamples were counted on a 

particle counter (CASY 1, Schärfe System Gmbh, Reutlingen, Germany) to 

determine algal concentration and particle volumes. Zooplankton samples were 

counted under a dissecting microscope. Asplanchna were enumerated by counting 

the whole sample while the more abundant Brachionus were counted in smaller 

subsamples.  

Data analysis  

The densities of the different rotifer species in terms of biomass (mg carbon per L) 

were analyzed using repeated measures ANOVA. Algal strain, predation and their 

interaction were used as between samples factors and days in the experiment were 

used as a within-subject factor. To meet the assumptions of ANOVA rotifer data 

were square root transformed. The first 7 days of data were excluded from the 

rotifer biomass analysis to prevent an over-representation of the initial transient 

phase. The data for repeated measures ANOVA were tested for sphericity using the 

Mauchley Sphericity test. Densities of the rotifer populations were further analyzed 

for amplitude using factorial ANOVA with algal strain and presence or absence of 

carnivory as the factors. The amplitude of population fluctuations was measured as 

the average difference between subsequent minimum and maximum densities of 

the dominant herbivore. Algal particle volumes were averaged over the total 

duration of the experiment and the effects of algal strain, carnivory and their 

interaction was tested using factorial ANOVA. 

Results  

Competition without predation  

The undefended herbivore B. rubens became the dominant competitor in all two-

level food chain replicates, both when the two herbivore species competed for 

undefended algae (Fig. 7.1a-c) and when competition was for inducible defended 

algae (Fig. 7.1d-f). The undefended superior competitor B. rubens reached a high 

density of 3.1 ± 0.12 mg C/L (mean ± SE) when feeding on undefended D. 

bicellularis algae (Fig. 1a-c). On inducible defended S. obliquus algae this density 

was 1.0 ± 0.08 mg C/L (mean ± SE; Fig. 7.1d-f). This corresponds to about 56 and 

18 B. rubens individuals/mL respectively. In contrast, B. calyciflorus showed 

densities of about 2.2 and 1.8 individuals/mL respectively, in the last few days 

before they became undetectable on day 30 (Fig. 7.1a-f). The amplitude of B. 

rubens population fluctuations was significantly smaller when the basal algal prey 

had inducible defenses (Tukey’s hsd test after ANOVA, P < 0.01).  
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Figure 7.1 Competition between two herbivores, B. rubens and B. calyciflorus on 
undefended D. bicellularis algae or on inducible defended S. obliquus algae, in absence of 
a carnivore. Filled triangles denote undefended B. rubens, open diamonds denote 
non-induced B. calyciflorus, algae are not shown. All three replicates per algal strain are 
shown; densities are expressed as mg C/L. 
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Figure 7.2 Competition between two herbivores, B. rubens and B. calyciflorus on 
undefended D. bicellularis algae or on inducible defended S. obliquus algae, under shared 
predation by the carnivore A. brightwellii. Filled triangles denote undefended B. rubens, 
open diamonds denote induced B. calyciflorus, algae and carnivores are not shown. All 
three replicates per algal strain are shown; densities are expressed as mg C/L. 
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Competition under shared predation 

In contrast, when both herbivores competed in the presence of carnivores, the other 

herbivore, B. calyciflorus that exhibited an inducible defense, became dominant 

(Fig. 7.2). Irrespective of predation risk, food chains with undefended algae as 

basal prey had higher amplitudes of the dominant competitor B. calyciflorus in 

comparison with food chains that were based on algae with inducible defenses 

(Tukey’s hsd after ANOVA, P < 0.01). The undefended competitor B. rubens now 

declined strongly during the second half of the experiment. The last time B. rubens 

was observed in the experiment occurred significantly later in the experiment when 

basal algae had an induced defense (T-Test, P < 0.001). On inducible defended 

algae B. rubens was last observed on day 29 in all replicates, i.e., almost up to the 

end of the experiment. In contrast, B. rubens was last observed on day 23.3 ± 0.33 

in the treatment with undefended algae. 

In both three-level food chain treatments population fluctuations with low 

minimum densities were observed. However, when algae had inducible defenses, 

the number of days that the population density of B. rubens dropped below our 

detection limit was significantly reduced. B. rubens was undetectable in 16.7 ± 1.9 

days when algae were undefended and only in 6.3 ± 0.3 days when algae had 

induced defenses (means ± SE; T-Test, P < 0.01). This did not change the outcome 

of competition under shared predation: B. calyciflorus clearly won.  

Meanwhile, the inducible defended competitor B. calyciflorus reached a high 

density of on average 1.2 ± 0.13 mg C/L (mean ± SE) on inducible defended S. 

obliquus algae (Fig. 7.2d-f). A high density of 2.2 ± 0.17 mg C/L (mean ± SE) was 

also reached on undefended D. bicellularis algae (Fig. 7.2a-c). This corresponds to 

about 12 and 22 B. calyciflorus individuals/mL respectively. 

Algal defenses 

Particle volumes differed significantly between algal strains (ANOVA, P < 0.001; 

Fig. 7.3). Undefended algae were smaller (less than 100 µm3) than inducible 

defended algae (approx. 200 µm3). There was a small, but significant indirect 

effect of the carnivore Asplanchna on the particle volumes of the undefended and 

inducible defended algal strains (ANOVA, P = 0.045). The algae were slightly 

smaller in the presence of their herbivore’s carnivore. The interactive effect of 

algal strain and carnivory was not significant (ANOVA, P= 0.15). 
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Figure 7.3 Particle sizes of the green algae at the basis of the food web: undefended D. 

bicellularis and inducible defended S. obliquus, averaged over the total duration of the 
experiment. White bars indicate two trophic levels or no carnivory, grey bars are part of 
food webs with three trophic levels or carnivore presence. Particle volumes shown are 
means (+SE) of three replicates. 

Discussion 

We studied how anti-predator defenses at different trophic levels affected the 

possibilities for predator-mediated coexistence or extinction in replicated 

experimental plankton communities. In particular, we analyzed how the presence 

or absence of inducible defenses in basal prey affected the outcome of competition 

between an inducible defended and an undefended herbivore in the presence or 

absence of a shared carnivore. We evaluate our results in terms of the 

consequences of inducible defenses for coexistence as opposed to exclusion of one 

of the competitors under shared predation. 

In our experiment undefended B. rubens was the better competitor in the 

absence of carnivory. In this case the herbivore with a non-induced defense, B. 

calyciflorus, strongly declined. B. calyciflorus was not completely outcompeted 

during the course of the experiment, but its density was marginal in comparison 

with the superior competitor.  

Under the experimental conditions used we found no true keystone predation 

or predator-mediated coexistence. Instead we found that the presence of the 

carnivore merely reversed who would outcompete the other, the undefended 

herbivore or the one with inducible defenses. Our observations are in concordance 
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with an unreplicated pilot experiment by Halbach (1969) who also observed 

reversal of the dominant species in a competition experiment under predation. We 

cannot exclude the possibility that we would have observed predator-mediated 

coexistence at a lower nutrient level, as is suggested in Leibold's model analysis 

(1996). Future experiments could include an entire range of nutrient levels to test 

for this possibility.  

As we hypothesized, the presence of inducible defenses in the algae dampened 

the fluctuations of the victor in each scenario. Induced defenses in algae also 

delayed the population decline towards consistently low or undetectable densities 

of the undefended herbivore species in the shared predation treatments. We 

therefore observed that induced defenses had several stabilizing effects on the 

dynamics of the system, although we should note that delaying extinction is more 

properly referred to as an equalizing effect (Chesson 2000). In this case we 

observed at least a moderate equalizing effect of induced defenses. It would be 

necessary to run the experiment for a longer period to precisely quantify if and 

when the undefended herbivore would go extinct under shared predation in a food 

chain based on algae with inducible defenses (Fig. 7.2d-f). In any case, induced 

defenses in the algae did not change the final outcome of the competition in terms 

of which herbivore species was the victor. 

Although carnivores had low densities in this experiment, they were detectable 

in most samples, and did not appear to decline towards extinction. Carnivores thus 

seemed to coexist with herbivores that had induced defenses, but without 

competing undefended herbivores. These were evidently unable to deal with the 

combined forces of carnivory and competition in the shared predation treatments. 

When we compare figures 7.1a-c with 7.2a-c, the addition of the carnivore to a 

two-level system seems to destabilize rather than stabilize community dynamics. In 

the three-level system the initial population fluctuations seem more pronounced, 

and the herbivore that is being outcompeted quickly reached densities below our 

detection limit. 

It is hard to infer the exact underlying mechanisms for the outcome of our 

plankton food chain dynamics based on the population dynamics data themselves. 

Several factors are likely to have played a role. First it is important to note that the 

preference of the two herbivores for algal size differs (Rothhaupt 1990): B. rubens 

most efficiently ingests the smaller particles (like our D. bicellularis), whereas B. 

calyciflorus has a lower clearance efficiency on these smaller particles than its 

competitor, even though they represent better food for B. calyciflorus than large 

colonial algae (Van der Stap et al. 2006). The higher efficiency of ingesting 

smaller particles by B. rubens could have caused the pattern observed in the 

treatment with undefended algae without carnivory, where B. calyciflorus was 
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outcompeted on undefended algae (Fig. 7.1a-c). It is important to note that the alga 

S. obliquus is rarely 100% defended: Though the proportion of large colonial algae 

increases in the presence of herbivores, a certain proportion remains of edible size. 

The higher efficiency of ingesting the smaller particles by B. rubens may have left 

B. calyciflorus with a relatively large proportion of less suitable food in the two-

level treatments with inducible defended algae. This could have led to the 

outcompetition of B. calyciflorus on algae with inducible defenses (Fig. 7.1d-f). At 

the same time B. rubens may experience a more pronounced effect of colony 

formation by the algae with inducible defenses, because of this rotifer’s smaller 

body size. In combination these effects could have been the cause of the relatively 

low carnivore densities that we observed in the three-level food chains with 

inducible defended algae. Limited top-down control by the carnivore may have 

caused the delay in the extinction of B. rubens in treatments with inducible 

defended algae (Fig. 7.2d-f) compared to those with undefended algae (Fig. 7.2a-

c). The relatively low carnivore pressure, however, did not prevent reversal of the 

outcome of competition. 

Interestingly, different Brachionus and Asplanchna species have been found to 

co-occur in natural communities like lakes (Oltra et al. 2001), ponds (Halbach 

1972) and rivers (Lair et al. 1998, Kim and Joo 2000). Even coexistence of rotifer 

sibling species originating from natural communities that differed in vulnerability 

to predation has been shown to occur (Lapesa et al. 2002). The mechanism 

suggested by the authors was that the competitively dominant and less resistant 

species were preferred as prey (Ciros-Pérez et al. 2004). Of course most 

explanations in ecology have to be multi-causal (Vos et al. 2004b), and many 

mechanisms may in fact interact to shape such coexistence in natural communities. 

Our experiment indicates that it is not self-evident that even less than a handful of 

species will coexist in a planktonic community. 

We chose the nutrient level in our experiment based on the experiments by 

Verschoor et al. (2004b). These authors showed that too low a nutrient 

concentration caused zooplankton extinctions due to an insufficient food quality of 

the algae. Conversely, at a high nutrient concentration three-level food chains 

mostly showed persistence of all species (Verschoor et al. 2004b). We chose the 

latter concentration to be used in the present experiment, to prevent extinctions due 

to insufficient quality of the basal algal prey. However, at the nutrient level used in 

our system no predator-mediated coexistence was observed. Instead we found 

predator-mediated extinction of an otherwise superior competitor, and this effect 

was delayed by induced defenses in algae, the basal prey in this planktonic system. 

The notion that preferential predation on competitive dominants generally 

promotes multi-species coexistence is thus an oversimplified idea. 



 

 

 

 

 

 

 

 

 

 

 

 



 

99 

Chapter 8 

Do inducible defenses stabilize population dynamics? 

A chemostat model and experiment 

Abstract 

The effect of inducible defenses on predator-prey interactions was 

investigated in a freshwater planktonic system with rotifers as 

predators and algal strains with different defense strategies as prey. 

An existing model was modified to make specific predictions for the 

effect of inducible defenses on the stability and persistence of 

predators and prey in chemostat experiments. Analysis of this model 

showed that at high nutrient concentrations in combination with high 

dilution rates only algae should exist. At intermediate dilution rates, 

algae and rotifers should show stable coexistence, while at low 

dilution rates predator-prey cycles should develop with the risk of 

stochastic extinctions. In the model, the width and location of these 

areas with different qualitative dynamics critically depends on the 

defense strategy of the algae. The results of the experiments with 

inducible defended algae were in accordance with model predictions. 

At intermediate dilution rates, algae and rotifers coexisted in 

relatively stable densities. At lower dilution rates, the average algae 

and rotifer densities increased as well as the variation in abundance. 

In at least one of the triplicate chemostats this led to a stochastic 

extinction of the rotifers. In all chemostats with permanently defended 

algae, rotifers occurred only at low numbers at the brink of extinction 

due to food limitation. We had expected higher rotifer densities at the 

lowest tested dilution rates for the treatments with these algae on basis 

of the model results. This quantitative difference may imply that the 

defended algae in the experiment were less edible than was assumed 
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in the model. Our results clearly show that qualitative shifts in 

predator-prey dynamics as a function of dilution rate and algal 

defense strategy occur. 

 

 
Van der Stap, I., M. Vos, B.W. Kooi, E. van Donk and W.M. Mooij. Do 
inducible defenses stabilize population dynamics? A chemostat model and 
experiment. Submitted. 
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Introduction 

Inducible defenses are individual level responses tuned to the level of predation. 

Such defenses have been observed in many organisms of both terrestrial and 

aquatic ecosystems (e.g., Karban and Baldwin 1997, Tollrian and Harvell 1999). 

This phenotypic plasticity of individuals can have a large effect on the interactions 

between prey and predators, as indicated in a number of theoretical studies that 

have incorporated inducible defenses (Edelstein-Keshet and Rausher 1989, 

Lundberg et al. 1994, Abrams and Walters 1996, Underwood 1999, Ramos-

Jiliberto 2003, Vos et al. 2004a, Gabriel et al. 2005, Kopp and Gabriel 2006). 

Inducible defenses have the potential to either stabilize or destabilize predator-prey 

interactions (Vos et al. 2005). The population level effects of inducible defenses 

predicted by theoretical models have been confirmed in empirical studies on 

terrestrial and aquatic food webs (Haukioja 1980, Peacor and Werner 2000, 

Raimondi et al. 2000, Turner et al. 2000, Underwood and Rausher 2002, Verschoor 

et al. 2004b, Van der Stap et al. 2006). Van der Stap and co-workers (Chapter 4) 

showed that the dynamics observed in an aquatic system consisting of algae and 

rotifers could only be explained if inducible defenses were taken into account in 

their model. 

Inducible defenses resolved the paradox of enrichment in a theoretical study on 

the effect of inducible defenses in Rosenzweig-MacArthur predator-prey dynamics 

(Vos et al. 2004a). Enrichment does not destabilize the system at intermediate 

mortality levels of the predator. The classical formulation of the model, that does 

not take inducible defenses into account, results in three areas of qualitatively 

different dynamics. These areas are separated by (1) the existence boundary, 

indicating that at higher predator mortalities, the predator cannot exist and only 

prey are present (2) the stability boundary, indicating that at lower predator 

mortalities, predator-prey cycles would occur with the risk of stochastic 

extinctions. The existence and stability boundaries converge at high carrying 

capacities. In the model with inducible defenses a stable coexistence of predator 

and prey occurs, even at high carrying capacities. To exemplify their results the 

model was specifically parameterized for an algae-rotifer system (Vos et al. 2004a, 

2004b). 

Until recently, empirical work on this algae-rotifer system was performed in 

either batch cultures in which nutrients were depleted (Van der Stap et al. 2006) or 

semi-continuous cultures in which part of the medium was replenished daily 

(Verschoor et al. 2004b). Inducible defenses prevented large population 

fluctuations in bi- and tritrophic food chains (Verschoor et al. 2004b, Van der Stap 
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et al. 2006) as predicted by the model. In their semi-continuous cultures two 

nutrient conditions were used to determine the effect of inducible defenses at high 

and low productivity, but the low nutrient conditions were too low to maintain 

zooplankton biomass, due to very high C:P ratios in the algae (Verschoor et al. 

2004b). Effectively, these experiments provided information for a single 

environmental condition. For a more critical test of qualitative model predictions 

we tested the effect of inducible defenses in continuous cultures (chemostats) with 

different dilution rates. In a chemostat the dilution rate is the continuous flow of 

medium through the vessel that determines the equilibrium growth rate of the 

cultured species (Walz 1993). It has been shown that qualitatively different 

dynamics can occur in single-stage chemostats in which rotifers and algal prey 

without inducible defenses are grown together (Kooi et al. 1998, Fussmann et al. 

2000). At intermediate dilution rates the populations were oscillating, while at 

either high or low dilution rates the populations were at equilibrium.  

Here we present model predictions on the effect of inducible defenses on 

population dynamics that would be expected under chemostat conditions, together 

with the first results of a chemostat experiment with algae with different defense 

strategies and rotifers. The main research questions that we focused on were 1) 

whether the three predicted qualitative types of predator-prey dynamics could be 

observed: only prey, stable equilibrium and predator-prey cycles with possible 

stochastic extinctions and 2) whether the dilution rates at which these changes 

occurred varied with the defense strategy of the algae. 

Materials & methods  

Model 

To model the effect of inducible defenses on population dynamics under chemostat 

conditions, we changed the formulations of algal dynamics in the model of Vos et 

al. (2004a, 2004b) from a logistic term to one with explicit nutrient dynamics. The 

resulting model for the chemostat set-up including inducible defenses consists of 

four differential equations: 
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In this model, N is the nutrient concentration, P1 the concentration of 

undefended algae, P2 the concentration of defended algae, and H the concentration 

of herbivores. The transition between undefended and defended state of the algae is 

described by induction and decay term in the algal equations. Notice that the 

expressions for the induction rates are equivalent to those in Vos et al. (2004a). An 

overview of the parameter values and their sources is given in Table 8.1. For the 

sake of simplicity the parameters that describe algae growth and nutrient-algae 

interaction are equal for all algal species. 

In absence of herbivores the system reduces to nutrient and algae: 
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In figure 8.1 the algal equilibrium concentration is plotted as a function of the 

dilution rate D. 

Chemostat experiment  

The single-stage chemostats were inoculated with the following organisms: (1) 

algae: undefended Desmodesmus bicellularis Hegewald, UTEX LB1359, or 

inducible defended Scenedesmus obliquus (Turpin) Kützing, UTEX 2630 or 

constitutively defended Desmodesmus quadricauda (Turpin) Hegewald of 

unknown origin; and (2) herbivorous zooplankton: Brachionus calyciflorus Pallas 

(Rotifera). Algae with inducible defenses form colonies in the presence of 

herbivores (Hessen and Van Donk 1993). The undefended algae are single-celled 

independent of grazing pressure, and colonial algae are constitutively defended. 

The defense strategies of the different algal strains were determined on basis of 

previously performed bioassays and population dynamics experiments (Verschoor 

et al. 2004a, Van der Stap et al. 2006). COMBO medium (Kilham et al. 1998) was 
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Table 8.1 Definitions of model parameters and their values. 
 

Parameter Value1 Unit Interpretation 

D Variable 1/d Dilution rate 
Ni Variable mg nutrient/mL Inflowing nutrient concentration 
r1 1.42* 1/d Maximum growth rate undefended plants 
r2 1.42* 1/d Maximum growth rate defended plants 
h1 0.02’ mg nutrient/mL Value at which half the maximum growth 

of undefended plants is reached 
h2 0.02’ mg nutrient/mL Value at which half the maximum growth 

of defended plants is reached 
cN 1’ mg C plant/ 

mg nutrient 
Conversion efficiency from nutrients to 
plants 

v1 0.77* 1/d Herbivore attack rate on undefended plants 
v2 0.77* 1/d Herbivore attack rate on defended plants 
h1 0.5* d Handling time on undefended plants 
h2 1.04* d Handling time on defended plants 
c1 0.36* mg C herbivore/ 

mg C plant 
Conversion efficiency from undefended 
plants to herbivores 

c2 0.36* mg C herbivore/ 
mg C plant 

Conversion efficiency from defended 
plants to herbivores 

i 1* 1/d Induction rate of defenses  
d 1* 1/d Decay rate of defenses 
h 0.06* mg C herbivore/ 

mL 
Herbivore density at which half of the 
plants is induced 

b 2.05* - Shape of plant defense functions 
(induction/decay) 

* Parameter values originate from Vos et al. 2004b 

’ Parameter values originate from Chapter 4  

 

used in all cultures and experiments. Algae were grown in batch cultures and 

refreshed twice a week before inoculation of the chemostats to ensure a high algal 

growth rate. Brachionus were hatched from cysts (Microbiotests Inc., Nazareth, 

Belgium), grown in batch cultures and raised on S. obliquus. Rotifers were rinsed 

thoroughly and put in clean medium for three hours. This, however, did not prevent 

appearance of S. obliquus in cultures with D. bicellularis. After three weeks the 

algae in the D. bicellularis cultures were completely taken over by S. obliquus and 

we decided to stop running these chemostats and continue only with S. obliquus 

and D. quadricauda treatments.  

Initially twelve 1.6L mixed culture chemostats were run. Chemostats were 

inoculated with 3.25·108 µm3/mL of the respective algal strain and herbivores at 

400 individuals/L in triplicate. Cultures were provided with 24h light and kept at a 

temperature of 20 ± 0.2ºC. Total mixing in the chemostat was ensured by 

moisturized and filtered air with a flow rate of 0.5 ± 0.1 L/min. Dilution rate of the 
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Figure 8.1 Algal densities for the nutrient-algae model as function of dilution rate.  

 

chemostat was changed every three weeks from 0.7 to 0.5 to 0.3 and finally 

0.1/day. 100 mL samples were taken daily, herbivores and algae were separated 

using 33 µm filters. Total duration of the experiment was 83 days. Algal particle 

densities (#/mL), mean particle volumes (µm3) and biovolume concentration 

(µm3/mL) were measured on a cell counter (CASY, Schärfe, Germany) fitted with 

a 60 µm capillary. Mean particle volume is correlated to the number of cells per 

colony as a measure of algal defense. Rotifer densities were estimated every other 

day by microscopic counts. In the data analysis we focused on average biomass per 

dilution rate, minima and maxima for both algae and rotifers. 

Results 

Model 

Three qualitatively different types of dynamics occurred in the model with 

inducible defenses in continuous culture. Changes in the stability properties of the 

food chain are shown across a range of nutrient concentrations and dilution rates 

c.q. herbivore death rates (Fig. 8.2). In case of low inflowing nutrient 

concentrations and high dilution rates only algae can exist (area A0). For 

intermediate values of both factors algae and herbivores coexist in a stable 

equilibrium (area A1). Low dilution rates and high nutrient concentrations lead to 

instability of the system (area B1). The existence boundary or transcritical (TC) 

bifurcation curve separates areas A0 and A1 marking the point where herbivores 

can enter the system. The stability boundary or Hopf bifurcation curve marks the 

point where predator-prey cycles start. For combinations of inflowing nutrient 
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concentrations and dilution rates that are between the existence and stability 

boundary the model predicts a stable coexistence between predator and prey. 

Comparison of the width of this region for undefended algae (Fig. 8.2, top), 

defended algae (Fig. 8.2, middle) and inducibly defended algae (Fig. 8.2, bottom) 

clearly shows the stabilizing effect of inducible defenses under a wide range of 

conditions. The presence of the three qualitatively different types of dynamics is 

fully in line with the predictions of an inducible defenses model with logistically 

growing algae (Vos et al. 2004a). 

In the chemostat model the inflowing nutrient concentration Ni determines the 

maximum density of algae. Given the specific parameterization of cN= 1 we can 

directly compare this concentration with the carrying capacity in the model of Vos 

et al. (2004a) (see also Kooi et al. 1998). The dilution rate is comparable to the 

herbivore mortality rate. This resemblance allows for a quantitative comparison of 

both models. We observed that the location of the TC curves is almost identical. 

The Hopf curves, however, are always lower for the chemostat model at low 

concentrations of the inflowing nutrient compared with the model with logistically 

growing algae. As a result the region with stable co-existence between algae and 

zooplankton is larger in the chemostat model than in the model by Vos et al. 

(2004a). The model presented in this paper does not allow for the formulation of an 

analytical expression of the Hopf curves as a function of the nutrient inflow 

concentration Ni , because the chemostat model for fixed defense strategies is a 

three-dimensional model due to the explicit formulation of nutrient dynamics. 

Mathematical analysis shows that the existence and stability boundary for 

undefended algae at infinite high concentrations of nutrient approaches a dilution 

rate equal to c1/h1 (with parameter values of Table 8.1 equal to 0.72/day). This 

implies that the model shows the paradox of enrichment when inducible defenses 

are not present in the algae, as the region of stable co-existence of algae and 

zooplankton vanishes at high concentrations of the inflowing nutrient. 

Chemostats with constitutive defended algae and rotifers 

For constitutive defended algae, algal biomass and dilution rate were inversely 

related in all three replicates (Fig. 8.3a-c). The minimum algal densities were fairly 

constant and remained far away from zero. These results resemble the pattern for 

equilibrium population densities in absence of herbivores (Fig. 8.1). Brachionus 

densities were indeed very low in two out of three replicates (Fig. 8.4a-c) and 

never exceeded the initial density. In one replicate Brachionus densities do 

increase above their initial density (Fig. 8.4b), but the maximum density is still 

much lower in comparison to the maxima reached on inducible defended algae. 
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Figure 8.2 The stability boundaries of bitrophic food chains without defenses (top), with 
constitutive defenses (middle), or with inducible defenses (top), for a range of the 
inflowing nutrient concentrations (Ni) and dilution rates (D). The transcritical (TC) and 
Hopf (H) bifurcation curves separate areas with qualitatively different long-term dynamics. 
Area A0: only plants exist. Grey area A1: stable coexistence of plants and herbivores. Area 
B1: plants and herbivores fluctuate. Parameter values used as in Table 8.1. 
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Figure 8.3 Variation in algal densities at each dilution rate in the chemostats. The mean 
biomass of algae per dilution rate is denoted in filled diamonds (mean±SE), open and 
closed circles indicate minima and maxima per dilution rate. All three replicates are shown 
(a-c) constitutively defended algae Desmodesmus quadricauda, (d-f) inducible defended 
algae Scenedesmus obliquus. 
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Chemostats with inducible defended algae and rotifers 

At a low dilution rate of 0.1/day algal minimum densities were close to zero in two 

out of three chemostats while maximum densities were very high indicating 

population cycles (Fig. 8.3d-f). Increasing the dilution rate to 0.3/day narrowed the 

difference between the minima and maxima and at the dilution rate of 0.5/day this 

difference was further minimalized to almost zero indicating a stable population at 

low abundance of algae. At the highest dilution rate of 0.7/day the difference 

between minima and maxima increased again. The patterns of algal dynamics were 

almost identical for the three replicates (Fig. 8.3d-f).  

Brachionus densities were low at high dilution rates, and densities increased 

with decreasing dilution rate. In one replicate Brachionus highest population 

densities were reached at a dilution rate of 0.1/day following the algal pattern (Fig. 

8.4f), while in the other two replicates the highest densities were reached at a 

dilution rate of 0.3 or 0.5/day (Fig. 8.4d, e). Peak herbivore densities coincided 

with their highest minima in two out of three replicates, indicating that the 

variation in density is minimal at these dilution rates. In one replicate Brachionus 

actually went extinct at the low dilution rate of 0.1/day (Fig. 8.4e). This 

immediately released the grazing pressure on the algae resulting in a higher algal 

minimum for this replicate (Fig. 8.3e). 

Discussion 

The model results showed that three qualitatively different types of dynamics 

occurred for bitrophic food chains in continuous cultures, i.e., only prey, stable 

equilibrium and predator-prey cycles. The model predicted stable equilibrium over 

a wider range of conditions for inducible defenses than for the other defense 

strategies. These predictions were tested in chemostat experiments. At intermediate 

dilution rates we observed low variation in population densities indicating 

relatively stable population dynamics in the chemostats with inducible defenses. 

Towards lower dilution rates the variation increased as if crossing the stability 

boundary and a stochastic extinction of the predator occurred in one replicate with 

highly variable population densities.  

Herbivores did not seem to have a major impact on the algal abundances of 

constitutively defended D. quadricauda. The algal abundances in these chemostats 

followed the pattern of dynamics that was predicted for a system with only algae, 

which is coherent to the low Brachionus densities throughout the experiment. 

According to the model results for the permanently defended algae, however, 

Brachionus should be able to build up a population at the lowest dilution rate of 

0.1/day (Fig. 8.2a), irrespective of the concentration of inflowing nutrients. We 
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Figure 8.4 Variation in rotifer densities at each dilution rate in the chemostats. The mean 
biomass of Brachionus per dilution rate is denoted in filled diamonds (mean±SE), open and 
closed circles indicate minima and maxima per dilution rate. All three replicates are shown 
(a-c) constitutively defended algae Desmodesmus quadricauda, (d-f) inducible defended 
algae Scenedesmus obliquus. 
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assume that D. quadricauda has a higher handling time or lower conversion 

efficiency in the chemostat experiment than was estimated a priori in the model, 

which may have led to the low herbivore numbers in the experiment. 

The results for the experiment with the inducible defended algae S. obliquus 

are in accordance with the expectations on basis of the model. At intermediate 

dilution rates of 0.3/day and 0.5/day Brachionus established a large population 

with minimal densities away from zero. The decrease in Brachionus densities at 

the highest dilution rate showed that we are moving towards the point where 

Brachionus will be flushed out and we would cross the existence boundary. 

Remarkably, crossing the transcritical bifurcation does not actually occur, 

indicating that S. obliquus might have a lower handling time or higher conversion 

efficiency than was assumed in the model. The strong variation in density that was 

observed at the lowest dilution rates of 0.1 and 0.3/day show that we have crossed 

the Hopf bifurcation, as predicted by the model. As the amplitude of these cycles 

increases, stochastic extinction of the herbivore or the algae becomes a threat to 

their coexistence. We observed one such extinction in our experiments at a dilution 

rate of 0.1/day (Fig. 8.4b), indicating that there is a considerable chance of losing 

the herbivore from the system in this way. 

There is a clear difference in algal dynamics between the chemostats with S. 

obliquus and the ones containing D. quadricauda (Fig. 8.3), while the dynamics of 

each replicate within treatments were rather similar. This holds to a lesser extent 

for the observed patterns of Brachionus abundance (Fig. 8.4). We can only 

speculate what is causing this higher variation between replicates in the 

Brachionus data, it could be either due to subtle differences in edibility of algae 

between replicates or an inherent property of culturing rotifers in chemostats.  

The experimental set-up included a treatment with undefended D. bicellularis 

for comparison with the dynamics with the other algal defense strategies. Initially, 

large fluctuations in algal and rotifer densities were observed at high dilution rates 

(not shown). These treatments, however, unintentionally became invaded by 

inducible defended S. obliquus. Consequently the undefended algae were 

outcompeted by inducible defended algae, despite the fact that the undefended 

algae have a higher growth rate than the inducible defended algae (Van der Stap et 

al. 2006). This successful invasion can be understood from the fact that it happened 

under herbivory and the undefended algae are more vulnerable than the inducible 

defended algae. In Kooi and Kooijman (2000) a bifurcation analysis is presented 

for the dynamics of a nutrient-two-prey-predator system in a chemostat. A result of 

the analysis was that the presence of a predator can allow coexistence of two 

competing prey populations feeding on a single nutrient. The loss of the 

undefended treatment is unfortunate because in a previous experiment the largest 
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distinction in dynamics was observed between the treatment with undefended algae 

and treatments with inducible or permanently defended algae (Van der Stap et al. 

2006). 

The cost of defenses has been mentioned as one of the prerequisites for the 

evolution of inducible defenses as opposed to constitutive defenses (Harvell 1990, 

Tollrian and Harvell 1999). For colonial algae these costs may manifest themselves 

in higher sinking rates (Lürling and Van Donk 2000). Colonies disintegrated less 

rapidly with increasing daily light dose which reveals photosynthetic costs 

associated with colony maintenance (Verschoor et al. 2005). Under natural 

conditions sedimentation and light cycle are two examples of environmental costs. 

The used experimental set-up may have decreased these costs, as continuous 

bubbling of the chemostats did not allow for sedimentation of the algae and 

continuous light conditions may have slowed the decay or relaxation of defenses.  

Our results support previous experiments where it was shown that population 

fluctuations did not occur with inducible defenses in a batch culture system (Van 

der Stap et al. 2006) or semi-continuous system (Verschoor et al. 2004b). In a two-

stage chemostat system where prey and predators were grown separately (Boraas 

1983), the algae did not form defenses and large fluctuations occurred again 

(Lürling et al. 2005). In the one-stage chemostats used here with inducible 

defended algae, fluctuations occurred at low dilution rates but were diminished at 

intermediate dilution rates. 

We conclude that our model results clearly show that qualitative shifts in 

predator-prey dynamics as a function of dilution rate occur and that the dilution 

rates at which these shifts take place are dependent on the algal defense strategy. 

The experimental results showed such qualitative differences as a function of 

dilution rate in the dynamics of food chains with inducible defenses in the algae. In 

food chains with constitutive defended algae rotifer densities remained low and 

algal dynamics resembled a model without herbivores. 
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Chapter 9 

General discussion 

Introduction 

In this thesis the effects of individual level plasticity on population 

dynamics and persistence were investigated. The specific research 

question was raised whether various defense strategies of organisms 

have distinguishable effects on the dynamics of experimental 

plankton communities. From theoretical studies it was predicted that 

inducible defenses stabilize population dynamics as opposed to 

constitutive defenses or the absence of defenses. But do theory and 

observations match? This topic and a few selected others will be 

discussed, some future prospects are indicated and the main 

conclusions are drawn. 

 

 
Parts of this chapter are based on the paper: Van der Stap, I., M. Vos and W.M. Mooij. 

Inducible defenses and rotifer food chain dynamics. Hydrobiologia in press. 
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Individual-level responses 

Inducible defenses in aquatic systems occur in a wide array of organisms ranging 

from algae to vertebrate animals (Tollrian and Harvell 1999). Phenotypically 

plastic responses in morphology interrupt the predation cycle between the attack 

and capture, whereas behavioral responses may interrupt the cycle already before 

the predator encounters the prey (Brönmark and Hansson 2000). Morphological 

defended individuals are hardly ever completely invulnerable and are therefore still 

attacked and handled as prey (Jeschke and Tollrian 2000). This results in a longer 

handling time for gape limited predators. The effectiveness of behavioral responses 

like refuge use or DVM is usually expressed in a reduced attack rate. Inducible 

defenses therefore affect the functional response of their consumers (Jeschke and 

Tollrian 2000, Verschoor et al. in press). 

The algae of the Scenedesmaceae family showed either no response or 

inducible colony formation to released infochemicals by actively feeding 

herbivores (Chapter 2). The observed response was not always consistent with the 

response in the live predator-prey experiments. The particle volumes of D. 

subspicatus UTEX 2594 and D. bicellularis LB 1359 almost doubled in the 

presence of a live herbivore (Chapter 3 and 5 respectively), while these strains did 

not show a response in particle size to herbivore infochemicals (Chapter 2). 

Therefore we hypothesized that this algal strain had an infochemical threshold that 

was higher than administered in the bioassays. The initial size of algae in the 

experiments ranged between smaller than 100 µm3 for fixed undefended algae, 

between 100-400 µm3 for inducible defended algae and larger than 400 µm3 for 

constitutive defended algae. This indicates that there is a relation between size and 

defense strategy. The small algae have a high growth rate and remain small in 

presence of herbivores, the medium sized algae show an increase in particle 

volume and cell number in response to herbivores while large algae, have a lower 

growth rate, but remain large throughout their life cycle. This trade-off suggests 

that costs are involved in the evolution of inducible defenses. In Scenedesmaceae 

the costs of colony formation may involve sedimentation out of the euphotic zone 

(Lürling and Van Donk 2000) or costs to the returning to unicells (Verschoor et al. 

2005). The costs of postero-lateral spine formation in Brachionus have not been 

investigated here, but may be in the increased drag when swimming around as 

suggested by Gilbert (1966).  

The induction process is a consumer density-dependent process (Anholt and 

Werner 1999, Van Donk et al. 1999). In the experiments with organisms with 

inducible defenses the percentage of induced algae and/or rotifers was very high, 



General discussion 

115 

indicating a very low threshold for induction of the morphological response. The 

inducible defended organisms appear as constitutive defended even at very low 

predator densities. This influences the half saturation constant in the induction and 

decay function in the inducible defenses model (Vos et al. 2004a, 2004b; Chapters 

4 and 8). 

Population-level responses 

The empirical studies in this thesis have shown that inducible defenses act as an 

important ecological factor with effects at the population level (Chapters 3, 5, 6, 7 

and 8). The experimental observations can be interpreted in the context of the 

model by Vos et al. (2004a), which predicted stability of predator-prey interactions 

for only a narrow range of parameter values when food chains were based on 

undefended algae. In contrast, for food chains with inducible defenses, stable 

coexistence of predator and prey was predicted for a relatively wide range of 

conditions. The dynamics in the tritrophic experiments with Brachionus 

calyciflorus were high amplitude fluctuations, which seemed to dampen out in the 

case of undefended algae at the base of the food chain, while a monotonic 

approach to a stable equilibrium was seen in the case of algae protected by 

inducible defenses (Chapter 5). The latter is directly in agreement with our 

expectation as based on the model: inducible defenses stabilized dynamics.  

However, the dampened fluctuations in the food chains with undefended algae 

can be explained in two alternative ways. The first possibility is that dynamics 

were truly cyclic, but some factor, such as increased heterogeneity through 

accumulation of detrital particles, stabilized the system late in the experiment. This 

explanation is consistent with our observations. However, it is also possible that 

the dynamics were inherently stable, but approached equilibrium through a damped 

oscillation, instead of monotonically. In this case, the dynamics of systems with 

undefended versus algae protected by inducible defenses are not separated by a 

Hopf bifurcation, but by a stable focus-node boundary, which is situated within the 

stability area itself (Yodzis and Innes 1992, Vos et al. 2005). On one side of this 

line a stable equilibrium is approached monotonically, on the other side this occurs 

through a damped oscillation (Vos et al. 2005). We cannot formally exclude this 

possibility based on current evidence.  

The fit of a standard Rosenzweig-MacArthur predator-prey model to 

experimental population dynamical data collected in batch cultures (Chapter 4) was 

greatly improved by the inclusion of inducible defenses into the model. While the 

width of the stable region is larger when inducible defenses are included, longer 

handling times of defended prey do increase the risk of extinction by crossing the 
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existence boundary (Area A0) sooner than undefended prey if nutrients are depleted 

in the system (Chapter 3 and 4). Inducible defenses have been shown to prevent 

population fluctuations in both two and three-level food chains and enhance the 

coexistence of predators and prey (Chapters 3, 5 and 7). However, herbivores may 

also go extinct below the stability boundary where cycles increase the risk of 

stochastic extinction (Area B1). This occurred in one replicate of tritrophic food 

chains with undefended algae at the basis (Chapter 5) and in one replicate of the 

chemostat experiment with inducible defenses in the algae at low dilution rates 

(Chapter 8). 

A particularly interesting observation is that inducible defenses at the 

herbivore level had little or no effect on stability in the model of Vos et al. (2004a, 

2004b). It seems paradoxical that some aspects of the food web interactions are 

determined by plant defenses, such as persistence while others depend fully on the 

presence of herbivore defenses, such as trophic cascade strength (top-down 

effects). What is the relative effect of inducible defenses either at plant or 

herbivore level? In the face of predation the herbivore defenses seemed more 

important than the plant defenses. Without herbivore defenses there was a clear 

trophic cascade in three-level food chains (Chapter 6). In this case, the absence of 

herbivore defenses had an overriding effect on the role of plant inducible defenses.  

When induced defenses occur in a variety of species within a community they 

could make a considerable contribution to a dampening of top-down control and 

dampening of population fluctuations. The experiments showed that the algae-

rotifer model system is very reproducible within batch, semi-continuous and 

continuous cultures, but caution is needed when making extrapolations to nature 

based on any of these systems alone. The degree to which our results can be 

extended to community dynamics depends on the ways in which dominant plant 

and herbivore species respond to multi-species complexes of their consumers. 

Many defenses, such as toxins, spines or reduced activity are likely to be effective 

against a wide variety of consumer species. The overall community-wide effects of 

inducible defenses will depend on the relative abundance and importance of 

different species employing these different kinds of defenses. Besides the inducible 

defense of spines in B. calyciflorus, at least two other species in this genus employ 

predatory defense strategies. Brachionus rubens does not exhibit these 

morphological defenses, rather it has the ability to attach to cladocerans, which 

may serve as an alternative escape mechanism from predation by Asplanchna (Iyer 

and Rao 1996), although this may actually increase their predation by fish. Rotifers 

of the Brachionus plicatilis complex differ in body size and vulnerability to 

copepod predation. This differential sensitivity to predation promoted coexistence 
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in a situation where the competitively dominant species were preferred as prey 

(Ciros-Pérez et al. 2004).  

Future research 

The majority of studies on chemical communication in aquatic systems including 

the present study of inducible defenses have been performed under controlled 

laboratory conditions. In a natural environment toxicants may disrupt information 

transfer between organisms. The use of rotifers in ecotoxicological studies has 

substantially increased over the last decade (Snell and Janssen 1995). The algae-

herbivorous rotifer-carnivorous rotifer system could perfectly be used to test the 

effect of toxicants on the higher trophic levels. In this way it can provide a measure 

of ecological impact that goes beyond the individual level. For ecotoxicological 

studies it is of great importance to clarify the chemical structure of the 

infochemical. Progress has been made the last few years in elucidating the 

infochemical inducing colony formation in the alga Scenedesmus by Daphnia 

(Lampert et al. 1994, Von Elert and Franck 1999, Van Holthoon et al. 2003). The 

most recent report indicates that aliphatic sulfates may be involved (Yasumoto et 

al. 2006). No recent analyses on the kairomone that induces spine formation in 

Brachionus by Asplanchna have been made, but earlier observations suggested that 

the chemical signal involved in this induction is a heat-stable protein (Gilbert 

1967). The use of new techniques offers opportunities to gain more insight into the 

chemical ecology (Pohnert et al. 2007), as well as the genetic and developmental 

basis of inducible defenses. These include an ecogenomics (Dicke et al. 2004) and 

physiological approach. 

Another aspect to be considered is that in an environment where predators and 

prey interact, predators can induce prey to defend, and predators may subsequently 

respond to morphological prey defenses. This so-called reciprocal phenotypic 

plasticity occurs for example in the predator-prey interaction of ciliates (Kopp and 

Tollrian 2003) and of salamanders and tadpoles (Kishida et al. 2006). A reciprocal 

phenotypic response has not yet been studied or observed for the experimental 

predator species A. brightwellii. However, omnivorous Asplanchna priodonta is 

able to grow larger jaws (Fontaneto and Melone 2005) and this may be one way of 

how a predator can respond to spines in brachionid prey. For behavioral responses 

predators may fool their prey by chemical camouflage or suppression of the release 

of chemical substance as, for instance, in trout (Brown et al 1995). 

In natural systems the presence of inducible defenses is not the only 

mechanism that stabilizes webs. Other mechanisms include, e.g., omnivory (Kooi 

et al. 2002), intraguild predation (Diehl and Feissel 2001), mutualism (Hay et al. 
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2004) or resource switching (Van Baalen et al. 2001). Future studies might 

investigate the interplay between inducible defenses and other stabilizing 

mechanisms. Theoretical models could be used to generate hypotheses on the 

interaction between these various mechanisms. The generated hypotheses may 

subsequently be tested using an experimental approach. The model system of algae 

and rotifers proved to be the ideal model system to test the higher order effects of 

inducible defenses on population dynamics (this thesis). The advantage of this 

system is that it may easily be expanded and the role of inducible defenses in 

combination with other factors or in multi-species more complex food webs can be 

investigated. The factors taken into account may be the addition of trophic levels, 

e.g., fish or carnivorous zooplankton, increased biodiversity at each trophic level, 

or omnivory, e.g., by omnivorous rotifers Asplanchna priodonta. Such an approach 

might help in disentangling the importance of the various mechanisms that affect 

the stability and persistence of food webs.  

Conclusions 

Phenotypic plasticity in individual prey can have profound effects on population 

dynamics, affecting both consumers at higher trophic levels and the prey 

populations themselves. Plasticity in defenses creates variation in handling times 

and/or attack rates of predators on different prey types. This can cause prey with 

inducible defenses, as opposed to those without defenses, to prevent strong 

population fluctuations in both bi- and tritrophic food chains. Linking the empirical 

results with a theoretical model showed that different defense strategies of prey 

place model predators at distinct locations in the parameter space of the model with 

associated different risks of extinction. The strength of trophic cascades was 

diminished by the presence of inducible morphological defenses, especially when 

present at the middle trophic level of tritrophic food chains. When the simple food 

web was based on inducible defended algae, differently defended herbivores which 

were competitors coexisted for a longer period under shared predation. Inducible 

defenses have an effect on both stability and persistence of experimental food 

webs, and might have a similar effect in nature. 
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Summary 
Starting at the individual plant level we investigated many strains of 

Scenedesmaceae for their response to infochemicals released by the herbivores 

Daphnia or Brachionus (Chapter 2). The algal strains showed either no response, 

i.e., were either fixed undefended or constitutively defended, or inducible defense 

by colony formation. Colony size was found to increase with Brachionus 

infochemical concentration and could be described by a sigmoid function. 

Inducible colony formation in Scenedesmaceae may be a general defense response 

to herbivory by zooplankton. 

To identify whether phenotypic plasticity at the individual level had 

consequences for population dynamics the effect of defense strategy was tested in 

batch cultures of Scenedesmus and Brachionus (Chapter 3). We observed 

fluctuations in the herbivore populations when feeding on undefended algae and a 

rise and decline of population densities when the algae were larger due to inducible 

or constitutive defenses. Persistence and extinctions of the herbivore were related 

to the concentration and fraction of small algal particles needed for maintenance 

and reproduction. Inducible defenses in the algae may favor larger zooplankton 

species such as Daphnia spp. that are less sensitive to shifts in their food size 

spectrum, relative to smaller zooplankton species, such as rotifers and in this way 

contribute to the structuring of planktonic communities. 

In Chapter 4, we further teased apart the mechanism of persistence and 

extinctions observed in the bitrophic food chains using a modeling approach. 

Mechanistic predator-prey models were fitted to the experimental population 

dynamics data collected in batch cultures. Realizing that the inducible defense 

model by Vos et al. (2004) assumed constant conditions, the model was modified 

for application to the transient dynamics in a batch experiment. A good match was 

obtained between model and data, with 77% of the variance in the data being 

accounted for by the model. Moreover, results from the model showed that 

quantitative differences in handling times of prey placed the system at different 

locations in parameter space, in particular relative to the predator existence 

boundary. Long handling times on defended prey brought predators closer to the 

existence boundary, where they go extinct earlier when nutrients are being depleted 

in the system than predators that are further away from the existence boundary.  
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The length of the experimental food chain was increased by adding a top-

predator to examine the effects of inducible defenses in two- and three-level food 

chains (Chapter 5). High fluctuations were observed in food chains with 

undefended algae and these did not occur when algae had inducible defenses. 

Surprisingly, the addition of a third trophic level did not result in a trophic cascade.  

This led to the hypothesis that herbivore defenses may have prevented an 

increase in plant biomass in food chains with a top-predator. This hypothesis was 

tested in Chapter 6, where a significantly higher plant biomass in three-level than 

in two-level food chains occurred whenever herbivores were undefended against 

carnivores. We compared trophic cascade strengths between the plankton 

communities in which herbivores were undefended against the results of Chapter 5 

where herbivores exhibited inducible defenses. The herbivore defenses, not plant 

defenses, had an overriding effect on cascade strength. 

Aquatic communities are complex and their structure is influenced by both 

competition and predation. In chapter 7 we increased the complexity of our food 

chain by having the inducible defended and undefended herbivores in competition. 

Addition of a predator to these competitors resulted in reversal of the outcome of 

competition. In absence of predation the undefended herbivore was the superior 

competitor over the non-induced defended herbivore. Conversely, in the presence 

of predation the inducible defended herbivore outcompeted the undefended 

herbivore. The persistence of the undefended herbivore was prolonged by the 

presence of inducible defenses in the algae. 

As a final test of the hypothesis that inducible defenses stabilize dynamics over 

a wide range of conditions, chemostats were used with various dilution rates 

imposing different mortality rates on all organisms of the system (Chapter 8). The 

experimental results showed that qualitative differences occurred in the dynamics 

of food chains with inducible defenses depending on dilution rate. 



 

121 

Appendix 
Table A.1 Composition of the standard medium used in all cultures and experiments. 
Nutrients were dissolved in de-ionized water. 

 

Compound mg/L 

Major nutrients  

CaCl3·2 H2O 36.76 

FeCl3·6 H2O 1.00 

H3BO3 24.00 

K2HPO4·3 H2O 8.71 

Na2EDTA·2 H2O 4.36 

NaHCO3 12.60 

NaNO3 85.01 

MgSO4·7 H2O 36.97 

Trace elements  

CoCl2·6 H2O 0.01200 

CuSO4·5 H2O 0.00100 

H2SeO3 0.00016 

MnCl2·4 H2O 0.18000 

NaMoO4·2 H2O 0.02200 

Na3VO4 0.00180 

ZnSO4·7 H2O 0.02200 

Vitamin  

C63H88CoN14O14P (B12) 0.00055 
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Samenvatting 
Een prooi kan zich op drie verschillende manieren verdedigen tegen predatoren (1) 

niet (onverdedigd), (2) altijd (permanent verdedigd) of (3) alleen wanneer er 

predatoren in de buurt zijn (induceerbaar verdedigd). In dit proefschrift wordt 

onderzocht of deze drie verdedigingsstrategieën mogelijk verschillende effecten 

hebben op de populatiedynamica en het voortbestaan van predatoren en prooien. 

Dit heb ik gedaan middels experimenten in een modelvoedselketen voor het zoete 

water, bestaande uit algen, algenetende raderdiertjes, en de predatoren van de 

algeneters.  

De ééncellige groenalg Scenedesmus obliquus vormt meercellige kolonies in 

reactie op informatiestoffen uitgescheiden door het herbivore (algenetende) 

raderdiertje Brachionus calyciflorus. Brachionus wordt weer gegeten door 

carnivore (vleesetende) raderdieren van het geslacht Asplanchna, en ontwikkelt 

lange stekels in reactie op infochemicaliën van Asplanchna. De (induceerbare) 

vorming van kolonies in Scenedesmus en van stekels in Brachionus wordt gezien 

als verdedigingsmechanisme tegen hun predatoren. Volgens de theorie zouden 

voedselketens met induceerbare verdediging zowel meer als minder sterke 

fluctuaties in aantallen kunnen hebben dan voedselketens met hetzij onverdedigde 

soorten, hetzij permanent verdedigde soorten. Voor het ophelderen van waar dit 

verschil van afhangt in meer natuurlijke systemen zijn experimenten een 

belangrijke bron van verder inzicht. 

In hoofdstuk 2 hebben we gekeken naar het voorkomen van verschillende 

verdedigingsstrategieën in verschillende stammen van de groenalgenfamilie 

Scenedesmaceae. Deze stammen werden blootgesteld aan infochemicaliën 

afkomstig van de herbivoren Daphnia en Brachionus. Soms vonden we hierbij 

geen respons, dat wil zeggen dat deze stammen ofwel onverdedigd, danwel 

permanent verdedigd waren. In andere gevallen zagen we een duidelijke toename 

van koloniegrootte als reactie op de infochemicaliën, wat wijst op induceerbare 

kolonievorming. De grootte van de kolonies nam toe met een toenemende 

infochemicaliën concentratie en kon worden beschreven met een sigmoïde functie. 

Omdat we induceerbare kolonievorming vonden in stammen van twee 

verschillende geslachten binnen de Scenedesmaceae, en omdat deze respons optrad 

bij infochemicaliën van twee verschillende soorten herbivoren, kan induceerbare 

kolonievorming een algemene verdedigingsreactie zijn op algenetend zoöplankton. 
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In hoofdstuk 3 zijn de effecten van verschillende verdedigingsstrategieën nader 

onderzocht in kweken met daarin Scenedesmus (algen) en Brachionus 

(herbivoren). We vonden fluctuaties in de herbivorendichtheden wanneer ze 

onverdedigde algen aten, en een éénmalige toe- en afname van de 

herbivorendichtheden wanneer de algen induceerbaar of permanent verdedigd 

waren. Het voortbestaan en uitsterven van de herbivoren was gerelateerd aan het 

aandeel en de dichtheid van kleine algendeeltjes, welke het meest geschikte 

voedsel bleken te zijn voor de raderdiertjes. Induceerbare verdediging in de algen 

pakt ongunstiger uit voor kleinere zoöplankton soorten zoals raderdieren dan voor 

grotere zoöplankton soorten zoals Daphnia en kan op deze manier een bijdrage 

leveren aan het structureren van plankton gemeenschappen.  

In hoofdstuk 4 zochten we met behulp van een model verder uit wat de 

oorzaak van voortbestaan danwel uitsterven was, zoals we gezien hadden in de 

voedselketens met twee trofische niveaus. Hiervoor werden predator-prooi 

modellen gefit op experimentele data verkregen uit de bovengenoemde kweken. 

Bij de beste fit kon 77% van de variantie in de data door het model verklaard 

worden. Bovendien lieten de modelresultaten zien dat verschillen in 

prooiverwerkingstijden belangrijk waren voor het voortbestaan van de predator. 

Langere verwerkingstijden van verdedigde prooien brachten predatoren dichter bij 

hun bestaansgrens, waardoor ze eerder uitstierven wanneer de draagkracht van het 

systeem omlaag ging.  

We hebben nader onderzoek verricht naar het verschil in populatiedynamiek 

tussen onverdedigde en verdedigde Scenedesmus in systemen waarbij de 

voedingsstoffen dagelijks aangevuld werden (hoofdstuk 5). Om hierbij de 

verschillen tussen voedselketens met twee en drie trofische niveaus te bestuderen, 

werd al dan niet een top-predator (Asplanchna) toegevoegd aan het Scenedesmus-

Brachionus-systeem. In voedselketens met onverdedigde algen vonden we grote 

fluctuaties in dichtheden van alle organismen, welke niet optraden wanneer algen 

geïnduceerd verdedigd waren. Verrassend genoeg leidde de toevoeging van 

Asplanchna niet tot meer Scenedesmus, een zogeheten trofische cascade (de 

invloed van een top-predator, via de herbivoor, op de algen). 

Dit leidde tot de hypothese dat verdedigde herbivoren een algentoename 

kunnen voorkomen in voedselketens met een top-predator, welke werd getest in 

een volgend voedselketen-experiment (hoofdstuk 6). In voedselketens met 

onverdedigde herbivoren vonden we inderdaad significant hogere algendichtheden 

in voedselketens met drie trofische niveaus ten opzichte van voedselketens met 

twee niveaus. We bepaalden de sterkte van de trofische cascade in deze 

voedselketens met onverdedigde herbivoren, en vergeleken deze met de resultaten 

van hoofdstuk 5 (geïnduceerd verdedigde herbivoren). Hieruit bleek dat het effect 
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van plantenverdediging op de sterkte van de cascade teniet werd gedaan door de 

aanwezigheid van herbivorenverdediging.  

Aquatische gemeenschappen zijn complex en hun structuur wordt beïnvloed 

door zowel competitie als predatie. In hoofdstuk 7 vergrootten wij de complexiteit 

van de voedselketen door herbivoren met en zonder induceerbare verdediging met 

elkaar te laten concurreren. Het toevoegen van een predator aan deze concurrenten 

resulteerde in omkering van de competitieve verhoudingen. In afwezigheid van 

predatie was de onverdedigde herbivoor de dominante soort, maar in aanwezigheid 

van predatie moest deze het onderspit delven tegen de induceerbaar verdedigde 

herbivoor. Het voortbestaan van de onverdedigde herbivoor werd begunstigd door 

de aanwezigheid van induceerbare verdediging in de algen.  

Als laatste test van de hypothese dat induceerbare verdediging stabiliserend 

werkt op de dynamiek werden continucultures gebruikt. Verschillende 

doorstroomsnelheden resulteren in verschillende sterftesnelheden van alle 

organismen van het systeem (hoofdstuk 8). De experimentele resultaten laten zien 

dat er kwalitatieve verschillen waren in de dynamiek van voedselketens met 

induceerbare verdediging, afhankelijk van de doorstroomsnelheid. 

Dit proefschrift laat zien dat verschillende verdedigingsstrategieën invloed 

kunnen hebben op zowel predatoren, concurrerende soorten als op de prooisoort 

zelf. Soorten met induceerbare verdediging kunnen populatiefluctuaties voorkomen 

in voedselketens met twee of drie trofische niveaus. Analyse van de experimentele 

resultaten met een theoretisch model liet zien dat verschillende 

verdedigingsstrategieën tot andere risico’s op uitsterven leidden. Het eten van 

verdedigde prooisoorten leidde tot eerder uitsterven van de predatoren wanneer de 

draagkracht van het systeem omlaag ging. De sterkte van trofische cascades werd 

verminderd door de aanwezigheid van induceerbare verdediging, vooral wanneer 

deze aanwezig was op het middelste trofische niveau (herbivoren). Met 

induceerbaar verdedigde algen kunnen concurrerende, maar verschillend 

verdedigde herbivoren langer met elkaar samenleven in de aanwezigheid van een 

top-predator. Induceerbare verdediging heeft een effect op zowel de stabiliteit als 

het voortbestaan van experimentele voedselwebben en kan zo mogelijk een 

belangrijke rol spelen in de natuur. 



 

 



 

141 

Dankwoord 
Ik wil graag iedereen bedanken die op welke manier dan ook een bijdrage heeft 

geleverd aan de totstandkoming van dit proefschrift! 

Alhoewel een geschreven dankjewel niet alles kan omvatten, wil ik een aantal 

personen met name noemen. Ik wil graag bedanken mijn promotor, Ellen, voor je 

bijzondere bijdrage aan het tot stand komen van dit proefschrift. Onze 

bijeenkomsten waren altijd goed om weer overzicht te krijgen. Ik wil graag ook 

bedanken mijn twee co-promotoren Wolf en Matthijs, voor jullie bijdrage in de 

vorm van overleg over proefopzetten, discussies, commentaar op de verschillende 

manuscripten en hele schrijfsessies. Jullie waren fantastische dagelijkse 

begeleiders en ik ben jullie dankbaar dat jullie er van begin tot eind zo ontzettend 

betrokken bij waren. Hartelijk dank ook aan Nico en Arie, voor jullie tomeloze 

inzet voor de verschillende experimenten en tellingen van fyto- en zoöplankton, 

zonder jullie vele liters medium, CASY en microscoop-uren had ik het niet zo ver 

gebracht.  

Al mijn werkzaamheden op het Centrum voor Limnologie heb ik uitgevoerd 

binnen de groep van Voedselweb Onderzoek, alle collega’s over de jaren heen 

hartelijk dank voor jullie bijdragen. Dankjewel Gabi, voor je steun, het delen van 

de goede en minder goede tijden op het CL en daarbuiten, en ook voor de warme 

kopjes thee, vele autoritjes en fantastische duiken met jou en Fin. Dat we nu geen 

collega’s meer zijn vind ik jammer, maar zelfs beter dan dat zijn we nu goede 

vrienden gebleven. Miguel, dankjewel dat je altijd klaar stond om te helpen op het 

lab en dat je altijd wel zin had in een kopje thee of een rondje lopen door het bos, 

dat vond ik erg fijn. Arnout, dank je voor het delen van de frustaties rond 

onderzoek en proefschrift en je geweldige verhalen en video-opnames die m’n 

hoofd af en toe fijn daarvan afleidde. Anthony, jij bent degene met wie ik vooral in 

het begin op de werkvloer nauw heb samengewerkt. Dankjewel voor de prettige 

samenwerking en de verschillende werkbezoeken die we samen hebben afgelegd. 

Stephan, het lijkt al weer lang geleden dat jij mij ontvangen hebt op mijn eerste 

werkdag op het CL (16 september 2002), ik vond het altijd heerlijk rustig met jou 

op de kamer. Ik herinner me vooral je passie voor literatuur, de daarbij behorende 

bibliotheek met referenties en grote kast met artikelen. De lege plek die je 

achterliet werd later opgevuld door Lisette. Lisette, jij vulde onze werkkamer altijd 

met warmte, letterlijk en figuurlijk. Hartelijk dank voor alle adviezen en jouw visie 



Acknowledgements 

142 

over onderzoek. Ik vond het fijn om samen met jou in de borrelcie grote NIOO- of 

CL-evenementen te organiseren, een congres te bezoeken en daarna op stap te 

gaan. Wees niet verbaasd als ik een volgende keer bij een congres ineens voor je 

neus sta. Bram, als student van Larenstein heb je je volledig ingezet voor het 

chemostaten experiment, dankjewel daarvoor en veel succes voor de afronding van 

je huidige universitaire studie aan de UvA. 

Alle medewerkers van het NIOO-CL hartelijk bedankt voor jullie 

ondersteuning en de geweldige tijd die ik daar heb doorgebracht. Speciaal wil ik al 

het personeel van de ondersteunende diensten danken voor de zovele handelingen 

achter de schermen die het hele centrum draaiende houden en daarmee bijgedragen 

hebben aan de afronding van dit proefschrift. Thijs en Peter nu dat mijn 

proefschrift af is, is het weer tijd voor een goed feest! Jullie hoeven het dit keer 

niet te organiseren, de geweldige tijd met onze CL borrelcie is voorbij. Ik hoop dat 

jullie erbij kunnen zijn, zonder jullie is er geen feest compleet. Alle huidige 

promovendi wil ik veel succes wensen voor het beginnen danwel afronden van hun 

proefschrift, het CL is echt een uitstekende plek om onderzoek te doen. 

Tijdens mijn onderzoek heb ik twee keer drie maanden doorgebracht aan de 

Ludwig-Maximillians Universität te München in de groep van Wilfried Gabriel. 

Ich möchte mich bei Ralph, Christian, Ina, Claudia, Elke, und Andreas für die gute 

Zeit in München bedanken. Mechtild und Lena sei dafür gedankt, dass sie sich um 

die Rotatorien gekümmert haben. Ein herzlicher Dank geht an Sebastian Diehl für 

die Benutzung der CASY. Michael und Frank, zwei Studenten der Statistik, danke 

ich für ihre Untersuchung. 

I would like to thank the International Rotifer Family for their wonderful 

meetings. Dr. SSS. Sarma and Dr. S. Nandini thank you very much for your visit to 

the Netherlands and for inviting me for a presentation at the conference in Mexico. 

Vrienden door dik en dun en bij koud of warm weer Mandy en Achim, jullie 

waren er altijd voor mij en Greg. Masha danki pa tur kos. Lieve Tessa, Floor, 

Maartje en Mirjam bedankt dat jullie zulke goede vriendinnen zijn geweest de 

afgelopen jaren. Beste Opa, dankuwel voor uw liefde, u bent mijn grote voorbeeld. 

Uw toespraken inspireren mij altijd en zullen dat ook in de toekomst blijven doen. 

Papa, Mama, Peter en Ronald ontzettend bedankt voor jullie onvoorwaardelijke 

steun en liefde. Nu we allemaal verder uitvliegen hoop ik dat we elkaar toch nog 

veel kunnen blijven zien. Danki Gregory, dushi ami stimabo hopi anto den futuro 

nos ta bai traha nos kas na Boneiru en een dikke knuffel voor jou om je speciaal te 

bedanken voor je liefde en steun door de jaren heen. 

 

Irene 



 

143 

Curriculum Vitae 
Irene van der Stap was born on April 20, 1978 in New York City, NY, USA. 

Barely a year old she moved with her parents to the Netherlands and grew up in 

Papendrecht. She went to the Johan de Witt Gymnasium in Dordrecht in 1990 and 

obtained her Gymnasium diploma in 1996.  

She studied Biology at Leiden University from 1996 to 2002. In her second 

year she specialized in Organismal Biology. Her first research project was an eco-

morphological one at the Department of Integrative Zoology, Leiden University. 

Here she studied the head-morphology of two closely related cichlid species from 

Lake Victoria under the supervision of Dr. F. Witte. With much enthusiasm she 

also was a teaching assistant in the practical of invertebrate zoology for first year 

students supervised by Dr. R. Kooi. Her second project was carried out at the 

University of Wales in Bangor with Prof. R.N. Hughes from February till 

September 2001. The subject this time was the behavioral ecology of three-spined 

sticklebacks. She observed the possible transfer of learned skills of these 

sticklebacks, while attacking and consuming various kinds of prey.  

After having successfully completed her Biology studies in 2002, she started 

the Ph.D project: “Inducible defences: from individual plasticity to food web 

dynamics and persistence” at the Department of Food Web Studies, Netherlands 

Institute for Ecology (NIOO-KNAW, CL) at Nieuwersluis, the Netherlands. She 

was advised by Dr. W.M. Mooij and Dr. M. Vos, who were engaged with 

theoretical models that predicted the effects of inducible defenses on population 

dynamics. Irene chiefly carried out the experiments to check these model 

predictions, but also performed some model studies. The organisms that were the 

subject of observation here were various rotifers and green algae. For this PhD 

project she also worked at the laboratory of Dr. R. Tollrian in Munich, Germany, 

twice for a period of three months.  

Since February 2007 Irene works as a post-doctoral researcher at the 

Department of Biology, University of Miami, Coral Gables, FL, USA on the 

development of a grid-based version of the Everkite model of snail kites in central 

and southern Florida for use in scenario evaluation for the Comprehensive 

Everglades Restoration Plan. 



 

144 

List of Publications 
Van der Stap, I., M. Vos and W.M. Mooij. 2006. Linking herbivore-induced 

defences to population dynamics. Freshwater Biology 51(3):424-434. 

Van der Stap, I., M. Vos, A.M. Verschoor, N.R. Helmsing and W.M. Mooij. 

Induced defenses in herbivores and plants differentially modulate a trophic 

cascade. Ecology in press. 

Van der Stap, I., M. Vos and W.M. Mooij. Inducible defenses and rotifer food 

chain dynamics. Hydrobiologia in press. 

Verschoor, A. M., I. van der Stap, N. R. Helmsing, M. Lürling and E. van Donk. 

2004. Inducible colony formation within the Scenedesmaceae: Adaptive 

responses to infochemicals from two different herbivore taxa. Journal of 

Phycology 40(5): 808-814. 

Verschoor, A. M., M. Vos and I. van der Stap. 2004. Inducible defences prevent 

strong population fluctuations in bi-and tritrophic food chains. Ecology Letters 

7(12): 1143-1148. 

Lürling, M., H. Arends, W. Beekman, M. Vos, I. van der Stap, W.M. Mooij and M. 

Scheffer. 2005. Effect of grazer-induced morphological changes in the green 

alga Scenedesmus obliquus on growth of the rotifer Brachionus calyciflorus. 

Proceedings of the International Association of Theoretical and Applied 

Limnology 29(2): 698-703. 

Witte, F., M. Welten, M. Heemskerk, I. van der Stap, L. Ham, C. Rutjes and J.H. 

Wanink. Major morphological changes in a Lake Victoria cichlid fish within 

two decades. Biological Journal of the Linnean Society in press. 

Van der Stap, I., M. Vos and W.M. Mooij. From inducible defenses to predator-

prey dynamics: linking models and experimental data. Submitted. 

Van der Stap, I., M. Vos, R. Tollrian and W.M. Mooij. Inducible defenses, 

competition and shared predation in planktonic food chains. Submitted. 

Van der Stap, I., M. Vos, B.W. Kooi, E. van Donk and W.M. Mooij. Do inducible 

defenses stabilize population dynamics? A chemostat model and experiment. 

Submitted. 




