5 research outputs found
Metal-Organic Frameworks and their composites for water remediation
347 p.La contaminación del agua es una preocupación global creciente, ya como consecuencia de los avances económicos del siglo XXI, cada día aumenta el número y tipo de productos químicos, fármacos y materiales que entran en contacto con las fuentes de agua, y por ende, con la cadena trófica completa. Entre las múltiples estrategias para abordar este problema, la adsorción y la fotocatálisis han atraído una atención considerable debido a su simplicidad, rentabilidad, fácil portabilidad y el hecho de que no necesite la adición de productos secundarios dañinos. En este sentido, las estructuras metal-orgánicas (MOF por sus siglas en inglés) se han perfilado como materiales muy prometedores ya que pueden fusionar adsorción y fotocatálisis en un mismo material.Los MOF son sólidos cristalinos construidos a partir de iones metálicos o grupos conectados por ligandos orgánicos en redes extendidas, ordenadas y altamente porosas. Estos materiales han sido ampliamente estudiados para la remediación de agua debido a la buena estabilidad química y térmica que muestran. Sin embargo, la mayoría de estos MOF muestran una baja selectividad por la mayoría de los iones metálicos, por lo que se deben realizar diferentes estrategias de funcionalización en ellos para mejorar sus capacidades de adsorción respecto a los metales pesados. Esta tesis se centra en explorar diferentes estrategias de funcionalización con el objetivo de mejorar la capacidad de adsorción hacia iones metálicos o potenciar otras funcionalidades, como la capacidad de fotorreducción de los metales o la actividad catalítica para degradar contaminantes fenólicos
On The Multiscale Structure and Morphology of PVDF-HFP@MOF Membranes in The Scope of Water Remediation Applications
Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) is a highly versatile polymer used for water remediation due to its chemical robustness and processability. By incorporating metal-organic frameworks (MOFs) into PVDF-HFP membranes, the material can gain metal-adsorption properties. It is well known that the effectiveness of these composites removing heavy metals depends on the MOF's chemical encoding and the extent of encapsulation within the polymer. In this study, it is examined how the micro to nanoscale structure of PVDF-HFP@MOF membranes influences their adsorption performance for CrVI. To this end, the micro- and nanostructure of PVDF-HFP@MOF membranes are thoroughly studied by a set of complementary techniques. In particular, small-angle X-ray and neutron scattering allow to precisely describe the nanostructure of the polymer-MOF complex systems, while scanning microscopy and mercury porosimetry give a clear insight into the macro and mesoporosity of the system. By correlating nanoscale structural features with the adsorption capacity of the MOF nanoparticles, different degrees of full encapsulation-based on the PVDF-HFP processing and structuration from the macro to nanometer scale are observed. Additionally, the in situ functionalization of MOF nanoparticles with cysteine is investigated to enhance their adsorption toward HgII. This functionalization enhanced the adsorption capacity of the MOFs from 8 to 30 mg·g−1.The authors thank financial support from the Spanish Agencia Estatal de Investigación (AEI) through Tailing43Green-ERAMIN project. This study forms part of the Advanced Materials program and was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and by The Basque Government under the IKUR program. Basque Government Industry and Education Departments under the ELKARTEK and PIBA (PIBA-2022-1-0032) programs, are also acknowledged. Ainara Valverde thanks the Basque Government (Education Department) for her PhD grant (PREB_2018_1_004). The MSCA-RISE-2017 (No 778412) INDESMOF actions that received funding from the European Union's Horizon 2020 research and innovation programme is also acknowledged. The authors acknowledge as well the CERIC-ERIC Consortium for the access to experimental SANS&SAXS facilities and financial support. The authors would like to acknowledge the use of the Somapp Lab, a core facility supported by the Austrian Federal Ministry of Education, Science and Research, the Graz University of Technology, the University of Graz, and Anton Paar GmbH. This work was supported as well by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project UIDB/04650/2020 and project PTDC/FIS-MAC/28157/2017. P.M.M. thanks the FCT for contract 2020.02802.CEECIND. The authors thank the technical and human support provided by SGIker (UPV/EHU)
Multigeruza polimerikoak: mediku-protesietarako materialen ezaugarriak hobetzeko bidea
Biomedikuntza arloan inplante moduan erabiltzeko material berrien es-kaera handia dago, baina errefus arazoak sortzen dituzte biobateragarritasun kontuak direla eta.Lan honetan azalduko dugu nola eraldatu dugun bi substratu motaren gainazala. Bat ezorganikoa izango da eta bestea polimerikoa. Geruzaz geruzako ("layer by layer") estrategiaz baliatuta, azido hialuroniko eta kitosanozko multigeruzak sortuko dira.Kitosanoa fluoreszenteki markatu eta mikroskopio konfokalean fluoreszentzia-haz kun dea behatu ondoren, ondorioztatu da geruzak modu arrakastatsu batean sortu direla. Honi esker, materialaren hidrofilitatea areagotzea lortu da, eta horrela, bakte-rioen aurkako gainazala lortzeaz gainera materialaren biobateragarritasuna handituko da modu merke eta sinple batean.; There is a great demand for new materials in the field of biomedicine to be used as implants, however they cause rejection problems due to their lack of biocom-patibility. In this work two substrates (inorganic and polymeric) will be surface modi-fied using the layer by layer strategy (LbL), in order to construct hyaluronic and chi-tosan multilayers. It has been proven that the layers were successfully built by fluorescent confocal microscopy by means of the increase of fluorescence along layers deposition after fluorescent labelling of chitosan. Thanks to this, it has been possible to increase the hydrophilicity of the surfaces enhancing antibacterial properties and get-ting more biocompatible materials in a simple and inexpensive way