16 research outputs found

    In Silico Modeling of Immunotherapy and Stroma-Targeting Therapies in Human Colorectal Cancer.

    Full text link
    Despite the fact that the local immunological microenvironment shapes the prognosis of colorectal cancer, immunotherapy has shown no benefit for the vast majority of colorectal cancer patients. A better understanding of the complex immunological interplay within the microenvironment is required. In this study, we utilized wet lab migration experiments and quantitative histological data of human colorectal cancer tissue samples (n = 20) including tumor cells, lymphocytes, stroma, and necrosis to generate a multiagent spatial model. The resulting data accurately reflected a wide range of situations of successful and failed immune surveillance. Validation of simulated tissue outcomes on an independent set of human colorectal cancer specimens (n = 37) revealed the model recapitulated the spatial layout typically found in human tumors. Stroma slowed down tumor growth in a lymphocyte-deprived environment but promoted immune escape in a lymphocyte-enriched environment. A subgroup of tumors with less stroma and high numbers of immune cells showed high rates of tumor control. These findings were validated using data from colorectal cancer patients (n = 261). Low-density stroma and high lymphocyte levels showed increased overall survival (hazard ratio 0.322, P = 0.0219) as compared with high stroma and high lymphocyte levels. To guide immunotherapy in colorectal cancer, simulation of immunotherapy in preestablished tumors showed that a complex landscape with optimal stroma permeabilization and immune cell activation is able to markedly increase therapy response in silico These results can help guide the rational design of complex therapeutic interventions, which target the colorectal cancer microenvironment. Cancer Res; 77(22); 6442-52. (c)2017 AACR

    Intestinal BMP-9 locally upregulates FGF19 and is down-regulated in obese patients with diabetes

    Get PDF
    believed to be mainly produced in the liver. The serum levels of BMP-9 were reported to be reduced in newly diagnosed diabetic patients and BMP-9 overexpression ameliorated steatosis in the high fat diet-induced obesity mouse model. Furthermore, injection of BMP-9 in mice enhanced expression of fibroblast growth factor (FGF)21. However, whether BMP-9 also regulates the expression of the related FGF19 is not clear. Because both FGF21 and 19 were described to protect the liver from steatosis, we have further investigated the role of BMP-9 in this context. We first analyzed BMP-9 levels in the serum of streptozotocin (STZ)-induced diabetic rats (a model of type I diabetes) and confirmed that BMP-9 serum levels decrease during diabetes. Microarray analyses of RNA samples from hepatic and intestinal tissue from BMP-9 KO- and wild-type mice (C57/Bl6 background) pointed to basal expression of BMP-9 in both organs and revealed a down-regulation of hepatic Fgf21 and intestinal Fgf19 in the KO mice. Next, we analyzed BMP-9 levels in a cohort of obese patients with or without diabetes. Serum BMP-9 levels did not correlate with diabetes, but hepatic BMP-9 mRNA expression negatively correlated with steatosis in those patients that did not yet develop diabetes. Likewise, hepatic BMP-9 expression also negatively correlated with serum LPS levels. In situ hybridization analyses confirmed intestinal BMP-9 expression. Intestinal (but not hepatic) BMP-9 mRNA levels were decreased with diabetes and positively correlated with intestinal E-Cadherin expression. In vitro studies using organoids demonstrated that BMP-9 directly induces FGF19 in gut but not hepatocyte organoids, whereas no evidence of a direct induction of hepatic FGF21 by BMP-9 was found. Consistent with the in vitro data, a correlation between intestinal BMP-9 and FGF19 mRNA expression was seen in the patients’ samples. In summary, our data confirm that BMP-9 is involved in diabetes development in humans and in the control of the FGF-axis. More importantly, our data imply that not only hepatic but also intestinal BMP-9 associates with diabetes and steatosis development and controls FGF19 expression. The data support the conclusion that increased levels of BMP-9 would most likely be beneficial under pre-steatotic conditions, making supplementation of BMP-9 an interesting new approach for future therapies aiming at prevention of the development of a metabolic syndrome and liver steatosis

    Quantitative Assessment of Breast-Tumor Stiffness Using Shear-Wave Elastography Histograms

    No full text
    Purpose: Shear-wave elastography (SWE) measures tissue elasticity using ultrasound waves. This study proposes a histogram-based SWE analysis to improve breast malignancy detection. Methods: N = 22/32 (patients/tumors) benign and n = 51/64 malignant breast tumors with histological ground truth. Colored SWE heatmaps were adjusted to a 0–180 kPa scale. Normalized, 250-binned RGB histograms were used as image descriptors based on skewness and area under curve (AUC). The histogram method was compared to conventional SWE metrics, such as (1) the qualitative 5-point scale classification and (2) average stiffness (SWEavg)/maximal tumor stiffness (SWEmax) within the tumor B-mode boundaries. Results: The SWEavg and SWEmax did not discriminate malignant lesions in this database, p > 0.05, rank sum test. RGB histograms, however, differed between malignant and benign tumors, p p = 0.03, rank sum). The diagnostic accuracy of the suggested method is still low (Se = 0.30 for Se = 0.90) and a subject for improvement in future studies. Conclusions: Histogram-based SWE quantitation improved the diagnostic accuracy for malignancy compared to conventional average SWE metrics. The sensitivity is a subject for improvement in future studies

    Semantic Focusing Allows Fully Automated Single-Layer Slide Scanning of Cervical Cytology Slides

    Get PDF
    <div><p>Liquid-based cytology (LBC) in conjunction with Whole-Slide Imaging (WSI) enables the objective and sensitive and quantitative evaluation of biomarkers in cytology. However, the complex three-dimensional distribution of cells on LBC slides requires manual focusing, long scanning-times, and multi-layer scanning. Here, we present a solution that overcomes these limitations in two steps: first, we make sure that focus points are only set on cells. Secondly, we check the total slide focus quality. From a first analysis we detected that superficial dust can be separated from the cell layer (thin layer of cells on the glass slide) itself. Then we analyzed 2,295 individual focus points from 51 LBC slides stained for p16 and Ki67. Using the number of edges in a focus point image, specific color values and size-inclusion filters, focus points detecting cells could be distinguished from focus points on artifacts (accuracy 98.6%). Sharpness as total focus quality of a virtual LBC slide is computed from 5 sharpness features. We trained a multi-parameter SVM classifier on 1,600 images. On an independent validation set of 3,232 cell images we achieved an accuracy of 94.8% for classifying images as focused. Our results show that single-layer scanning of LBC slides is possible and how it can be achieved. We assembled focus point analysis and sharpness classification into a fully automatic, iterative workflow, free of user intervention, which performs repetitive slide scanning as necessary. On 400 LBC slides we achieved a scanning-time of 13.9±10.1 min with 29.1±15.5 focus points. In summary, the integration of semantic focus information into whole-slide imaging allows automatic high-quality imaging of LBC slides and subsequent biomarker analysis.</p></div

    The detailed steps for whole-slide sharpness quantification;

    No full text
    <p>At first, the slide is divided into 16 sub-regions. Then, cells are detected by their color values. In total 200 cells are used to quantify the sharpness of each region. For every cell, five sharpness features are computed and a support vector machine (SVM) is used to classify each cell into the in-focus (class 1) or out-of-focus(class 0) category. The percentage of in-focus cells (0–100%) is used to calculate a score for each region, and a combination of these scores is used to represent slide sharpness.</p

    A simplified schematic of the complete workflow for scanning one slide.

    No full text
    <p>The slide is loaded and the area to be scanned is detected automatically. Focus points are set and after autofocussing, the focus point images are analyzed. If the number of valid focus point is higher than five, the slide is scanned and its sharpness is analyzed. From the results of sharpness analysis, a decision is made whether to re-scan the slide or not. The slide is re-scanned until the quality is sufficient for further analysis.</p

    Comparison multi-layer scanning with single-layer scanning.

    No full text
    <p>Two cross sections of a LBC slide are shown. The upper one shows the multilayer scanning principle. The lines represent the particular layers. Green line parts represent in-focus regions and red line parts represent the out-of-focus regions. In multilayer scanning, the most parts of the layers are out-of-focus and thereby an unnecessary amount of data is generated. The lower cross section shows the principle of a single-layer scan. A “master-focus layer” (green line) represents the full 3D focus map of the LBC slide. In the optimal case, one focus layer would be sufficient and multi-layering would not be needed anymore or only as a supplement to cover thick cell clusters (transparent green lines).</p

    Confusion matrix and overall performance of the classifier used to determine the sharpness of the cell image.

    No full text
    <p>Confusion matrix and overall performance of the classifier used to determine the sharpness of the cell image.</p

    Contingency table and overall performance of the focus point analysis of 2295 focus points from 51 LBC slides.

    No full text
    <p>Contingency table and overall performance of the focus point analysis of 2295 focus points from 51 LBC slides.</p

    Descriptive statistics of the focus point dataset of the particular slides showing the high variations between the z-values within and between the slides.

    No full text
    <p>Descriptive statistics of the focus point dataset of the particular slides showing the high variations between the z-values within and between the slides.</p
    corecore