8,240 research outputs found

    High-resolution CRIRES spectra of Terzan1: a metal-poor globular cluster toward the inner bulge

    Get PDF
    Containing the oldest stars in the Galaxy, globular clusters toward the bulge can be used to trace its dynamical and chemical evolution. In the bulge direction, there are ~50 clusters, but only about 20% have been subject of high-resolution spectroscopic investigations. So far, the sample observed at high resolution spans a moderate-to-high metallicity regime. In this sample, however, very few are located in the innermost region (RGC≀R_{GC}\leq1.5\,Kpc and ∣l,bâˆŁâ‰€5∘|l, b|\leq5^{\circ}). To constrain the chemical evolution enrichment of the innermost region of Galaxy, accurate abundances and abundance patterns of key elements based on high-resolution spectroscopy are necessary. Here we present the results we obtained for Terzan 1, a metal-poor cluster located in the innermost bulge region. Using the near-infrared spectrograph CRIRES at ESO/VLT, we obtained high-resolution (R≈\approx50,000) H-band spectra of 16 bright giant stars in the innermost region (r≀60"r\leq 60") of Terzan1. Full spectral synthesis techniques and equivalent width measurements of selected lines, isolated and free of significant blending and/or contamination by telluric lines, allowed accurate chemical abundances and radial velocities to be derived. Fifteen out of 16 observed stars are likely cluster members, with an average heliocentric radial velocity of +57±\pm1.8\,km/s and mean iron abundance of [Fe/H]=--1.26±\pm0.03\,dex. For these stars we measured some [α\alpha/Fe] abundance ratios, finding average values of [O/Fe]=+0.39±\pm0.02\,dex, [Mg/Fe]=+0.42±\pm0.02\,dex, [Si/Fe]=+0.31±\pm0.04\,dex, and [Ti/Fe]=+0.15±\pm0.04\,dex The α\alpha enhancement (≈+0.4\approx +0.4\,dex) found in the observed giant stars of Terzan1 is consistent with previous measurements on other, more metal-rich bulge clusters, which suggests a rapid chemical enrichment.Comment: 7, pages, 6 figures, accepted for publication on A&

    Cyclic Fluctuations, Climatic Changes and Role of Noise in Planktonic Foraminifera in the Mediterranean Sea

    Get PDF
    The study of Planktonic Foraminifera abundances permits to obtain climatic curves on the basis of percentage ratio between tropical and temperate/polar forms. Climatic changes were controlled by several phenomena as: (i) Milankovitch's cycles, produced by variations of astronomical parameters such as precession, obliquity and eccentricity; (ii) continental geodynamic evolution and orogenic belt; (iii) variations of atmospheric and oceanic currents; (iv) volcanic eruptions; (v) meteor impacts. But while astronomical parameters have a quasi-regular periodicity, the other phenomena can be considered as "noise signal" in natural systems. The interplay between cyclical astronomical variations, the "noise signal" and the intrinsic nonlinearity of the ecologic system produces strong glacial or interglacial period according to the stochastic resonance phenomenon.Comment: 6 pages, 4 figure

    Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS III. The first global photometric metallicity map of the Galactic bulge

    Full text link
    We investigate the large scale metallicity distribution in the Galactic bulge, using a large spatial coverage, in order to constrain the bulge formation scenario. We use the VISTA variables in the Via Lactea (VVV) survey data and 2MASS photometry, covering 320 sqdeg of the Galactic bulge, to derive photometric metallicities by interpolating of the (J-Ks)0 colors of individual Red Giant Branch stars based on a set of globular cluster ridge lines. We then use this information to construct the first global metallicity map of the bulge with a resolution of 30'x45'. The metallicity map of the bulge revealed a clear vertical metallicity gradient of ~0.04 dex/deg (~0.28 dex/kpc), with metal-rich stars ([Fe/H]~0) dominating the inner bulge in regions closer to the galactic plane (|b|<5). At larger scale heights, the mean metallicity of the bulge population becomes significantly more metal-poor. This fits in the scenario of a boxy-bulge originated from the vertical inestability of the Galactic bar, formed early via secular evolution of a two component stellar disk. Older, metal-poor stars dominate at higher scale heights due to the non-mixed orbits from the originally hotter thick disk stars.Comment: Accepted for publication in A&

    WISeREP - An Interactive Supernova Data Repository

    Full text link
    We have entered an era of massive data sets in astronomy. In particular, the number of supernova (SN) discoveries and classifications has substantially increased over the years from few tens to thousands per year. It is no longer the case that observations of a few prototypical events encapsulate most spectroscopic information about SNe, motivating the development of modern tools to collect, archive, organize and distribute spectra in general, and SN spectra in particular. For this reason we have developed the Weizmann Interactive Supernova data REPository - WISeREP - an SQL-based database (DB) with an interactive web-based graphical interface. The system serves as an archive of high quality SN spectra, including both historical (legacy) data as well as data that is accumulated by ongoing modern programs. The archive provides information about objects, their spectra, and related meta-data. Utilizing interactive plots, we provide a graphical interface to visualize data, perform line identification of the major relevant species, determine object redshifts, classify SNe and measure expansion velocities. Guest users may view and download spectra or other data that have been placed in the public domain. Registered users may also view and download data that are proprietary to specific programs with which they are associated. The DB currently holds >8000 spectra, of which >5000 are public; the latter include published spectra from the Palomar Transient Factory, all of the SUSPECT archive, the Caltech-Core-Collapse Program, the CfA SN spectra archive and published spectra from the UC Berkeley SNDB repository. It offers an efficient and convenient way to archive data and share it with colleagues, and we expect that data stored in this way will be easy to access, increasing its visibility, usefulness and scientific impact.Comment: To be published in PASP. WISeREP: http://www.weizmann.ac.il/astrophysics/wiserep

    The Far-Ultraviolet Spectra of TW Hya. II. Models of H2 Fluorescence in a Disk

    Full text link
    We measure the temperature of warm gas at planet-forming radii in the disk around the classical T Tauri star (CTTS) TW Hya by modelling the H2 fluorescence observed in HST/STIS and FUSE spectra. Strong Ly-alpha emission irradiates a warm disk surface within 2 AU of the central star and pumps certain excited levels of H2. We simulate a 1D plane-parallel atmosphere to estimate fluxes for the 140 observed H2 emission lines and to reconstruct the Ly-alpha emission profile incident upon the warm H2. The excitation of H2 can be determined from relative line strengths by measuring self-absorption in lines with low-energy lower levels, or by reconstructing the Ly-alpha profile incident upon the warm H2 using the total flux from a single upper level and the opacity in the pumping transition. Based on those diagnostics, we estimate that the warm disk surface has a column density of log N(H2)=18.5^{+1.2}_{-0.8}, a temperature T=2500^{+700}_{-500} K, and a filling factor of H2, as seen by the source of Ly-alpha emission, of 0.25\pm0.08 (all 2-sigma error bars). TW Hya produces approximately 10^{-3} L_\odot in the FUV, about 85% of which is in the Ly-alpha emission line. From the H I absorption observed in the Ly-alpha emission, we infer that dust extinction in our line of sight to TW Hya is negligible.Comment: Accepted by ApJ. 26 pages, 17 figures, 6 table
    • 

    corecore