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The study of Planktonic Foraminifera abundances permits to obtain climatic curves on
the basis of percentage ratio between tropical and temperate/polar forms. Climatic
changes were controlled by several phenomena as: (i) Milankovitch’s cycles, produced by
variations of astronomical parameters such as precession, obliquity and eccentricity; (ii)
continental geodynamic evolution and orogenic belt; (iii) variations of atmospheric and
oceanic currents; (iv) volcanic eruptions; (v) meteor impacts. But while astronomical
parameters have a quasi-regular periodicity, the other phenomena can be considered as
“noise signal” in natural systems. The interplay between cyclical astronomical variations,
the “noise signal” and the intrinsic nonlinearity of the ecologic system produces strong
glacial or interglacial period according to the stochastic resonance phenomenon.
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1. Introduction

Planktonic Foraminifera (PF) are unicellular organisms that commonly live in the
sea surface and intermediate water rarely in the deepest part of water column. PF
are very sensible to the seasonal temperature variations, and in particular some
species prefer sea surface tropical water, while other species prefer temperate or
polar water [1]. The study of dynamic population of PF permit to obtain climatic
curves through two methods: (i) study of the percentage ratio between tropical and
temperate/polar species; (ii) analysis of the oxygen isotope δ18O variations by car-
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bonatic test of PF [2]. PF are in fact good markers for the reconstruction of Earth
climate [3, 4]. Moreover other methods are used to reconstruct the Earth’s climate
history, as that based on the analysis of variations of (δ18O), present in the ice
cores from Greenland and Antarctic [5]. According to Ref. [6], climatic fluctuations
were essentially produced by cyclical variations of sun energy received by Earth,
that periodically change its astronomical parameters (equinox precession, 21 ky
(1ky = 103years); obliquity of Earth’s axis, 41 ky; eccentricity of the orbit 100 ky).
These astronomical cyclicities are known in earth sciences as Milankovitch’s cycles,
and they can be considered a quasi-deterministic signal that periodically produced
drastic changes in Earth climate. The astronomical forcing is not the only reason
for glacial/interglacial oscillations. In fact insolation variations produce changes in
the atmospheric temperature, but the geographical distribution, and position, of
continent and margin plates are extremely important. The presence of a barrier, as
the continental marginal plate, indeed can influence the atmospheric and oceanic
currents. In addition to these global events, other “randomic” events occur: (i) tec-
tonic uplift of belt ridge; (ii) volcanic activity, in particular explosive eruptions;
(iii) meteor impacts, that occasionally strike the Earth and that caused several
catastrophic mass extinctions [7]. The Mediterranean Sea, because of its geograph-
ical position, between tropical and temperate area, is a good laboratory for the study
of the climatic variations of Earth history [4]. High resolution studies carried out on
marine sediments and ice cores from Greenland and Antarctic, have demonstrated
that in the last 400 kyr, in addition to the classic Milankovitch cycles, other cyclic
variations were present with a higher frequencies, known as sub-Milankovian cy-
cles. In particular spectral analysis carried out on these sequences has permitted to
recognize periodicities of 5000, 2500, 1600 and 200 years [8]. Recently geochemical
isotopes of ice cores from Greenland have suggested that Earth’s climate variations
occur according to the model based on stochastic resonance phenomenon [8].

2. Experimental Data

In this work we analyze data from: (i) Mediterranean core sediments (Sites 963,
Leg 160), taken during Ocean Drilling Program (ODP), and compared with upper
Pleistocene ice cores (GRIP and GISP2), from Greenland [5]; (ii) landscape sec-
tion outcropping in Southern Sicily, and compared with Pliocene-Pleistocene core
sediments come from Atlantic Ocean Sites 659 [9]. For detailed description of ex-
periments see Refs. [3, 4, 9].

(i) Mediterranean ODP sites — The core from Site 963 (central part of
Mediterranean Sea, Sicily Channel), consisting of grey marls rich of PF, was sampled
each 2 cm in order to have a continuous sequence from today to 25 ky before present
(B.P.). The PF fluctuation abundances [3] are compared with oxygen isotope of
Gisp2. There is a good correlation between the fluctuation percentage ratio of a
particular warm species (Globigerinoides ruber) and δ18O variations. In particular
while G. ruber is always present in the interval today-10 ky, even if small oscillations
in percentage ratio have been observed, in some particular intervals, between 14.5
ky and 25 ky, G. ruber is absent or very rare (Fig. 2) due to the drastic decrease of
global temperature during Younger Dryas and Last Glacial Maximum periods.

(ii) Southern Sicily — The Bonsignore section (near Ribera) is characterized
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Fig. 1. Location map of studied sections in the Mediterranean area.

Fig. 2. Correlation between oxygen isotope δ18O (GISP2) and percentage fluctuations of G. ruber
of Site 963. The Last Glacial Maximum (LGM) and Younger Dryas (YD) correspond to minima
percentages of G. ruber. This tropical species is always present in the Mediterranean area from
today until � 10 ky (B.P.), but during glacial phases was absent or very rare.
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Fig. 3. (a) Cold species (G. bulloides) fluctuations between 3.4 My and 2.93 My (Bonsignore
section) and (b) comparison with oxygen isotope (δ18O) of Site 659 [9] between today and 6 My.
The number of fluctuations 88–107 correspond to lithological cycles of Punta Piccola described
by [6]. The increase of the amplitude of oscillations of cold species in (a) coincides with increase
of tectonic uplift of Panama area in (b).

by a continuous sequence of marly-limestone and marls of Trubi and Monte Nar-
bone Formations [4,6], rich in PF. This sedimentary sequence is coeval with Punta
Piccola section (Agrigento), where lithological cycles 88–107 were described [6].
Bonsignore section recover a time interval between 3.4 My (million years ago) and
2.93 My. From 3.4 to 3.2 My, lithological and foraminifera cyclicities are mostly
controlled by precession forcing (Fig. 3(a)), while after 3.2 My the obliquity forcing
becomes dominant [4, 6]. This change in climatic Earth system is connected with
a casual event as the uplift of Panama area and, consequently, with the closure
of Panamian Isthmus. Figure 3(a) represents the time interval around the major
step in Panama closure. This event produced a drastic change in oceanic and at-
mospheric circulation with the amplification of Gulf Current gyre and an increase
of the formation of North Atlantic Deep Water (NADW) in consequence [4, 9]. In
Fig. 3 it is possible to observe that the drastic increase of oscillation amplitude of
cold species, recognized in the Mediterranean Sea, starts in coincidence with sharp
increase of oxygen isotope (Atlantic Ocean). The Mediterranean Sea has perfectly
recorded this important global climatic cooling that favored the formation of Polar
Ice Sheet [4, 9].

3. The Model

The dynamics of the biological system described above appear rather complex due
to the presence of periodicities which sometimes disappear. The main peculiarities



July 21, 2005 14:21 WSPC/167-FNL 00276

Climatic Changes and Fluctuations in Zoo-Plankton L353

Fig. 4. Time evolution of both populations at different levels of the multiplicative noise, namely
σ = 10−10 for 0 < t < 48000, and σ = 10−9 for t > 48000. The values of the parameters
are γ = 10−1, ω0/2π = 10−3, and σβ = 1.78 · 10−3. The initial values of the two species are
x(0) = y(0) = 1.

observed from experimental time series of PF are: (i) geological events produce
“time windows” characterized by quasi-periodic fluctuations with almost constant
intensity, which can be ascribed to different “noise levels”; (ii) some periodicities
appear in one of this “time window”, while are absent in all the other ones; (iii) the
two species G. ruber and Globigerina bulloides coexist in a competing dynamical
regime. As a first approximation we try to describe the behavior of our ecosystem
by a stochastic model of two competing species by using the following generalized
Lotka–Volterra (LV) equations [10, 11]

ẋ = x (1 − x − β(t)y) + x ξx(t) (1)
ẏ = y (1 − y − β(t)x) + y ξy(t), (2)

where ξx(t) and ξy(t) are statistically independent δ-correlated Gaussian white
noises with zero mean. The multiplicative noise models the interaction between
the environment and the species. The interaction parameter β is characterized by
a critical value corresponding to βc = 1. For β < βc a coexistence regime of the two
species is established, while for β > βc an exclusion regime takes place, i.e. in a
finite time one of the two species extinguishes. It is then interesting to investigate
the time evolution of the ecosystem for β varying around the critical value βc in the
presence of fluctuations, due to the significant interaction with the environment.
This behavior can be obtained assuming β subjected to a bistable potential and a
periodic driving according to the following stochastic differential equation [11]

dβ(t)
dt

= −dU(β)
dβ

+ γcos(ω0t) + ξβ(t), (3)

where γ = 10−1, ω0/(2π) = 10−3, and U(β) is a generalized bistable potential
U(β) = h(β − (1 + ρ))4/η4 − 2h(β − (1 + ρ))2/η2. The stable states correspond to
the two regimes of the deterministic LV model. In Eq. (3) ξβ(t) is a δ-correlated
Gaussian white noise with zero mean. To analyze the dynamics of the two species
we fix the additive noise intensity at the value σβ = 1.78 ·10−3 [11]. The time series
of the two species are obtained for two different values of the multiplicative noise
intensity σ = 10−10, 10−9 (see Fig. 4). For σ = 10−10 the two species coexist and
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quasi-periodic oscillations appear with random periodical inversions of populations
(Fig. 4). An increase of the noise (σ = 10−9) produces an enhancement of the
amplitude of these quasi-periodical oscillation as observed in experimental data (see
Fig. 3). The appearance of some periodicities, previously “hidden”, are due to the
stochastic resonance phenomenon. The periodical signal of small amplitude, that is
the obliquity in Fig. 3, is enhanced by the presence of the noise [11, 12]. We note
finally that the theoretical model, based on the stochastic resonance phenomenon,
predicts a time behavior of the two species abundances, which cannot be obtained
by using models which are simply periodic or stochastic [10, 11, 13].

4. Conclusions

The main peculiarities observed by analyzing our experimental data of PF in Sicily
Channel can be explained within the proposed model of SR in population dynamics
[11]. The nonlinearity of the natural system together with a periodical forcing and
a “noise signal” produces a coherent response of the ecosystem, by enhancing the
effect of the geological causes.
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