9 research outputs found

    Mesh generation automatisation for optimisation of naval propellers

    Get PDF
    Las técnicas de modelado computacional son herramientas que hacen posible la introducción a bajo costo de mejoras para optimizar el desempeño de propulsores navales en condiciones realistas de servicio. Debido a que deben ser adaptados a cada embarcación, existe la necesidad de automatizar los modelos CAD de los impulsores y su mallado posterior para los cálculos CFD involucrados en cada lazo de optimización. En este trabajo se elige la plataforma GNU Salome (https://www.salome-platform.org) como entorno de trabajo y se desarrolla código en lenguaje Python para automatizar la reconstrucción geométrica y el mallado asociado al dominio de fluido que envuelve a cada variante de impulsor. Las series que se utilizan son las publicadas por elcanal de Wageningen: Serie B (o serie de Troost) y Serie Ka (serie Kaplan). Como resultado de los mismos, se obtienen mallas de elementos finitos realizadas paramétricamente para ambas series y se varían diversos parámetros geométricos ilustrando la robustez de los códigos desarrollados en una amplia gama de alternativas de diseño.Nowadays, computer modelling techniques are allowing the introduction of relevant improvements to optimise naval propellers behaviour lowering the costs involved. Given that the propellers must be adapted to each particular vessel, the need of CAD propellers model automatisation and further meshing for CFD calculation arises. In the present work the GNU+Linux Salome Platform was chosen as a working environment. Python language scripting code is developed to automatise the geometric model and meshing, associated to the fluid domain enclosing each propeller variant. The propellers series that are used were published by the Wageningen Canal: B series (or Troost series) and Ka series (Kaplan series). As a result, parametrically generated finite element meshes are obtained for both series and for different geometric parameters, showing the robustness of the code developed for a wide range of design alternatives.Fil: Carr, Gustavo Eduardo. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Vaccari, Alejandro C.. Universidad Tecnológica Nacional. Cent.de Estudios Mar del Plata; ArgentinaFil: Gimenez, Julio A. Universidad Tecnológica Nacional. Cent.de Estudios Mar del Plata; ArgentinaFil: Sánchez, Yael N.. Universidad Tecnológica Nacional. Cent.de Estudios Mar del Plata; ArgentinaFil: Biocca, Nicolás. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; ArgentinaFil: Antonelli, Nicolás Alejandro. Universidad Tecnológica Nacional. Cent.de Estudios Mar del Plata; ArgentinaFil: Martínez, Juan Francisco. Universidad Tecnológica Nacional. Cent.de Estudios Mar del Plata; ArgentinaFil: Urquiza, Santiago Adrian. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Mecanica. Grupo de Ingeniería Asistida Por Computador; Argentina. Universidad Tecnológica Nacional. Cent.de Estudios Mar del Plata; Argentin

    Modelado por elementos finitos de propulsores navales

    Get PDF
    El modelado computacional de hélices y propulsores navales está siendo utilizado cada vez con más frecuencia para mejorar y optimizar las técnicas de diseño. Dada la variabilidad de condiciones de operación de las embarcaciones comerciales se hace prácticamente imposible el uso de componentes estandarizadas y, por lo tanto, es muy frecuente que las características de los propulsores tengan que ser calculadas en base a las especificidades operacionales de cada buque. De esta manera, la simulación computacional ha ganado terreno como herramienta de diseño, fundamentalmente porque puede aportar información relevante a bajo costo y evaluar con rapidez las diferentes alternativas posibles para llegar a la selección adecuada del tipo de impulsor y sus principales características. Más aún, estas técnicas permiten evaluar el desempeño de los propulsores cuando la incidencia del casco en los patrones de flujo no puede ser despreciada. Para ello es necesario tener en cuenta que estos componentes son elementos rotantes, con movimiento relativo respecto a la carena. De esta manera, en el modelado se impone la necesidad de utilizar dominios segregados para uno y otro componente. El dominio rotante es resuelto usualmente como dominio no-inercial llevando en cuenta los efectos de aceleraciones centrífugas y de Coriolis. Alternativamente, dicho dominio puede tratarse con una formulación Arbitrariamente Euleriana-Lagrangeana o ALE. En razón de esto, en el presente trabajo se comparan los resultados derivados de ambas formulaciones alternativas. Las ecuaciones resultantes se discretizan por medio del método de Elementos Finitos. Se comparan los resultados correspondientes a cada una de las formulaciones y el costo computacional asociado a las mismas. Adicionalmente, se obtienen los coeficientes de empuje Kt y torque Kq comparándose con aquellos de las fuentes documentales utilizadas comúnmente en ingeniería naval para el cálculo de propulsores.Publicado en: Mecánica Computacional vol. XXXV, no. 7.Facultad de Ingenierí

    Modelado por elementos finitos de propulsores navales

    Get PDF
    El modelado computacional de hélices y propulsores navales está siendo utilizado cada vez con más frecuencia para mejorar y optimizar las técnicas de diseño. Dada la variabilidad de condiciones de operación de las embarcaciones comerciales se hace prácticamente imposible el uso de componentes estandarizadas y, por lo tanto, es muy frecuente que las características de los propulsores tengan que ser calculadas en base a las especificidades operacionales de cada buque. De esta manera, la simulación computacional ha ganado terreno como herramienta de diseño, fundamentalmente porque puede aportar información relevante a bajo costo y evaluar con rapidez las diferentes alternativas posibles para llegar a la selección adecuada del tipo de impulsor y sus principales características. Más aún, estas técnicas permiten evaluar el desempeño de los propulsores cuando la incidencia del casco en los patrones de flujo no puede ser despreciada. Para ello es necesario tener en cuenta que estos componentes son elementos rotantes, con movimiento relativo respecto a la carena. De esta manera, en el modelado se impone la necesidad de utilizar dominios segregados para uno y otro componente. El dominio rotante es resuelto usualmente como dominio no-inercial llevando en cuenta los efectos de aceleraciones centrífugas y de Coriolis. Alternativamente, dicho dominio puede tratarse con una formulación Arbitrariamente Euleriana-Lagrangeana o ALE. En razón de esto, en el presente trabajo se comparan los resultados derivados de ambas formulaciones alternativas. Las ecuaciones resultantes se discretizan por medio del método de Elementos Finitos. Se comparan los resultados correspondientes a cada una de las formulaciones y el costo computacional asociado a las mismas. Adicionalmente, se obtienen los coeficientes de empuje Kt y torque Kq comparándose con aquellos de las fuentes documentales utilizadas comúnmente en ingeniería naval para el cálculo de propulsores.Publicado en: Mecánica Computacional vol. XXXV, no. 7.Facultad de Ingenierí

    Modelado por elementos finitos de propulsores navales

    Get PDF
    El modelado computacional de hélices y propulsores navales está siendo utilizado cada vez con más frecuencia para mejorar y optimizar las técnicas de diseño. Dada la variabilidad de condiciones de operación de las embarcaciones comerciales se hace prácticamente imposible el uso de componentes estandarizadas y, por lo tanto, es muy frecuente que las características de los propulsores tengan que ser calculadas en base a las especificidades operacionales de cada buque. De esta manera, la simulación computacional ha ganado terreno como herramienta de diseño, fundamentalmente porque puede aportar información relevante a bajo costo y evaluar con rapidez las diferentes alternativas posibles para llegar a la selección adecuada del tipo de impulsor y sus principales características. Más aún, estas técnicas permiten evaluar el desempeño de los propulsores cuando la incidencia del casco en los patrones de flujo no puede ser despreciada. Para ello es necesario tener en cuenta que estos componentes son elementos rotantes, con movimiento relativo respecto a la carena. De esta manera, en el modelado se impone la necesidad de utilizar dominios segregados para uno y otro componente. El dominio rotante es resuelto usualmente como dominio no-inercial llevando en cuenta los efectos de aceleraciones centrífugas y de Coriolis. Alternativamente, dicho dominio puede tratarse con una formulación Arbitrariamente Euleriana-Lagrangeana o ALE. En razón de esto, en el presente trabajo se comparan los resultados derivados de ambas formulaciones alternativas. Las ecuaciones resultantes se discretizan por medio del método de Elementos Finitos. Se comparan los resultados correspondientes a cada una de las formulaciones y el costo computacional asociado a las mismas. Adicionalmente, se obtienen los coeficientes de empuje Kt y torque Kq comparándose con aquellos de las fuentes documentales utilizadas comúnmente en ingeniería naval para el cálculo de propulsores.Publicado en: Mecánica Computacional vol. XXXV, no. 7.Facultad de Ingenierí

    Simulación de rompevórtices en el colector de entrada de un canal de ensayos

    Get PDF
    En los canales de ensayos hidrodinámicos donde la recirculación del fluido se realiza mediante una conducción de sección considerablemente inferior a la de la zona de pruebas, surge el inconveniente de la formación un chorro de alta velocidad que produce condiciones inaceptables de operación. Por lo tanto, es imperativo instalar un elemento disipador ubicado en la zona de vertido, procurando lograr condiciones de uniformidad y regularidad en el campo de velocidades en la zona de mediciones. Dicho disipador de energía cinética consiste usualmente en una serie de mallas o enrejados que actúan como promotores de vórtices de tamaño muy inferior al del chorro principal, que en virtud de sus dimensiones, se disipan rápidamente. Los fenómenos involucrados en este tipo de componente son difíciles de predecir con precisión debido fundamentalmente a las condiciones de flujo turbulento prevalecientes en las inmediaciones del mismo. Esto dificulta los cálculos, motivando la necesidad de realizar modelos computacionales con vistas a obtener criterios razonables para el diseño preliminar. En este trabajo se presenta un modelo por elementos finitos del colector de entrada de un canal de ensayos hidrodinámicos existente en la UA Mar del Plata de la Universidad Tecnológica Nacional. En el mismo, el disipador es representado por zonas donde la permeabilidad del medio se altera para simular el efecto de la presencia de las mallas difusoras. Mediante esta implementación computacional se busca obtener detalles del patrón de flujo y la incidencia del disipador en la regularización del campo de velocidades. Los resultados obtenidos son utilizados para la selección del tipo de enrejado y la cantidad de placas disipadoras necesarias para lograr que el chorro se disipe convenientemente y se alcancen condiciones uniformes en la zona de ensayos.Publicado en: Mecánica Computacional vol. XXXV, no.5Facultad de Ingenierí

    Simulación de rompevórtices en el colector de entrada de un canal de ensayos

    Get PDF
    En los canales de ensayos hidrodinámicos donde la recirculación del fluido se realiza mediante una conducción de sección considerablemente inferior a la de la zona de pruebas, surge el inconveniente de la formación un chorro de alta velocidad que produce condiciones inaceptables de operación. Por lo tanto, es imperativo instalar un elemento disipador ubicado en la zona de vertido, procurando lograr condiciones de uniformidad y regularidad en el campo de velocidades en la zona de mediciones. Dicho disipador de energía cinética consiste usualmente en una serie de mallas o enrejados que actúan como promotores de vórtices de tamaño muy inferior al del chorro principal, que en virtud de sus dimensiones, se disipan rápidamente. Los fenómenos involucrados en este tipo de componente son difíciles de predecir con precisión debido fundamentalmente a las condiciones de flujo turbulento prevalecientes en las inmediaciones del mismo. Esto dificulta los cálculos, motivando la necesidad de realizar modelos computacionales con vistas a obtener criterios razonables para el diseño preliminar. En este trabajo se presenta un modelo por elementos finitos del colector de entrada de un canal de ensayos hidrodinámicos existente en la UA Mar del Plata de la Universidad Tecnológica Nacional. En el mismo, el disipador es representado por zonas donde la permeabilidad del medio se altera para simular el efecto de la presencia de las mallas difusoras. Mediante esta implementación computacional se busca obtener detalles del patrón de flujo y la incidencia del disipador en la regularización del campo de velocidades. Los resultados obtenidos son utilizados para la selección del tipo de enrejado y la cantidad de placas disipadoras necesarias para lograr que el chorro se disipe convenientemente y se alcancen condiciones uniformes en la zona de ensayos.Publicado en: Mecánica Computacional vol. XXXV, no.5Facultad de Ingenierí

    Simulación de rompevórtices en el colector de entrada de un canal de ensayos

    Get PDF
    En los canales de ensayos hidrodinámicos donde la recirculación del fluido se realiza mediante una conducción de sección considerablemente inferior a la de la zona de pruebas, surge el inconveniente de la formación un chorro de alta velocidad que produce condiciones inaceptables de operación. Por lo tanto, es imperativo instalar un elemento disipador ubicado en la zona de vertido, procurando lograr condiciones de uniformidad y regularidad en el campo de velocidades en la zona de mediciones. Dicho disipador de energía cinética consiste usualmente en una serie de mallas o enrejados que actúan como promotores de vórtices de tamaño muy inferior al del chorro principal, que en virtud de sus dimensiones, se disipan rápidamente. Los fenómenos involucrados en este tipo de componente son difíciles de predecir con precisión debido fundamentalmente a las condiciones de flujo turbulento prevalecientes en las inmediaciones del mismo. Esto dificulta los cálculos, motivando la necesidad de realizar modelos computacionales con vistas a obtener criterios razonables para el diseño preliminar. En este trabajo se presenta un modelo por elementos finitos del colector de entrada de un canal de ensayos hidrodinámicos existente en la UA Mar del Plata de la Universidad Tecnológica Nacional. En el mismo, el disipador es representado por zonas donde la permeabilidad del medio se altera para simular el efecto de la presencia de las mallas difusoras. Mediante esta implementación computacional se busca obtener detalles del patrón de flujo y la incidencia del disipador en la regularización del campo de velocidades. Los resultados obtenidos son utilizados para la selección del tipo de enrejado y la cantidad de placas disipadoras necesarias para lograr que el chorro se disipe convenientemente y se alcancen condiciones uniformes en la zona de ensayos.Publicado en: Mecánica Computacional vol. XXXV, no.5Facultad de Ingenierí

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure

    No full text
    BACKGROUND The selective cardiac myosin activator omecamtiv mecarbil has been shown to improve cardiac function in patients with heart failure with a reduced ejection fraction. Its effect on cardiovascular outcomes is unknown. METHODS We randomly assigned 8256 patients (inpatients and outpatients) with symptomatic chronic heart failure and an ejection fraction of 35% or less to receive omecamtiv mecarbil (using pharmacokinetic-guided doses of 25 mg, 37.5 mg, or 50 mg twice daily) or placebo, in addition to standard heart-failure therapy. The primary outcome was a composite of a first heart-failure event (hospitalization or urgent visit for heart failure) or death from cardiovascular causes. RESULTS During a median of 21.8 months, a primary-outcome event occurred in 1523 of 4120 patients (37.0%) in the omecamtiv mecarbil group and in 1607 of 4112 patients (39.1%) in the placebo group (hazard ratio, 0.92; 95% confidence interval [CI], 0.86 to 0.99; P = 0.03). A total of 808 patients (19.6%) and 798 patients (19.4%), respectively, died from cardiovascular causes (hazard ratio, 1.01; 95% CI, 0.92 to 1.11). There was no significant difference between groups in the change from baseline on the Kansas City Cardiomyopathy Questionnaire total symptom score. At week 24, the change from baseline for the median N-terminal pro-B-type natriuretic peptide level was 10% lower in the omecamtiv mecarbil group than in the placebo group; the median cardiac troponin I level was 4 ng per liter higher. The frequency of cardiac ischemic and ventricular arrhythmia events was similar in the two groups. CONCLUSIONS Among patients with heart failure and a reduced ejection, those who received omecamtiv mecarbil had a lower incidence of a composite of a heart-failure event or death from cardiovascular causes than those who received placebo. (Funded by Amgen and others; GALACTIC-HF ClinicalTrials.gov number, NCT02929329; EudraCT number, 2016 -002299-28.)
    corecore