1,440 research outputs found

    A simple and robust method for connecting small-molecule drugs using gene-expression signatures

    Get PDF
    Interaction of a drug or chemical with a biological system can result in a gene-expression profile or signature characteristic of the event. Using a suitably robust algorithm these signatures can potentially be used to connect molecules with similar pharmacological or toxicological properties. The Connectivity Map was a novel concept and innovative tool first introduced by Lamb et al to connect small molecules, genes, and diseases using genomic signatures [Lamb et al (2006), Science 313, 1929-1935]. However, the Connectivity Map had some limitations, particularly there was no effective safeguard against false connections if the observed connections were considered on an individual-by-individual basis. Further when several connections to the same small-molecule compound were viewed as a set, the implicit null hypothesis tested was not the most relevant one for the discovery of real connections. Here we propose a simple and robust method for constructing the reference gene-expression profiles and a new connection scoring scheme, which importantly allows the valuation of statistical significance of all the connections observed. We tested the new method with the two example gene-signatures (HDAC inhibitors and Estrogens) used by Lamb et al and also a new gene signature of immunosuppressive drugs. Our testing with this new method shows that it achieves a higher level of specificity and sensitivity than the original method. For example, our method successfully identified raloxifene and tamoxifen as having significant anti-estrogen effects, while Lamb et al's Connectivity Map failed to identify these. With these properties our new method has potential use in drug development for the recognition of pharmacological and toxicological properties in new drug candidates.Comment: 8 pages, 2 figures, and 2 tables; supplementary data supplied as a ZIP fil

    The removal of thermally aged films of triacylglycerides by surfactant solutions

    Get PDF
    Thermal ageing of triacylglycerides (TAG) at high temperatures produces films which resist removal using aqueous surfactant solutions. We used a mass loss method to investigate the removal of thermally aged TAG films from hard surfaces using aqueous solutions of surfactants of different charge types. It was found that cationic surfactants are most effective at high pH, whereas anionics are most effective at low pH and a non-ionic surfactant is most effective at intermediate pH. We showed that the TAG film removal process occurs in several stages. In the first ‘‘lag phase’’ no TAG removal occurs; the surfactant first partitions into the thermally aged film. In the second stage, the TAG film containing surfactant was removed by solubilisation into micelles in the aqueous solution. The effects of pH and surfactant charge on the TAG removal process correlate with the effects of these variables on the extent of surfactant partitioning to the TAG film and on the maximum extent of TAG solubilisation within the micelles. Additionally, we showed how the TAG removal is enhanced by the addition of amphiphilic additives such as alcohols which act as co-surfactants. The study demonstrates that aqueous surfactant solutions provide a viable and more benign alternative to current methods for the removal of thermally aged TAG films

    CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro

    Full text link
    The direct relationship between the aging process and the incidence and prevalence of both benign prostatic hyperplasia (BPH) and prostate cancer (PCa) implies that certain risk factors associated with the development of both diseases increase with the aging process. In particular, both diseases share an overly proliferative phenotype, suggesting that mechanisms that normally act to suppress cellular proliferation are disrupted or rendered dysfunctional as a consequence of the aging process. We propose that one such mechanism involves changes in the prostate microenvironment, which ‘evolves’ during the aging process and disrupts paracrine interactions between epithelial and associated stromal fibroblasts. We show that stromal fibroblasts isolated from the prostates of men 63–81 years of age at the time of surgery express and secrete higher levels of the CXCL12 chemokine compared with those isolated from younger men, and stimulate CXCR4-mediated signaling pathways that induce cellular proliferation. These studies represent an important first step towards a mechanistic elucidation of the role of aging in the etiology of benign and malignant prostatic diseases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73356/1/j.1474-9726.2005.00173.x.pd

    Enhanced IL-6/IL-6R Signaling Promotes Growth and Malignant Properties in EBV-Infected Premalignant and Cancerous Nasopharyngeal Epithelial Cells

    Get PDF
    Nasopharyngeal carcinoma (NPC) is etiologically associated with Epstein-Barr virus (EBV) infection. However, the exact role of EBV in NPC pathogenesis remains elusive. Activation of signal transducer and activator of transcription 3 (STAT3) is common in human cancers including NPC and plays an important role in the pathogenesis and progression of human cancers. Interleukin-6 (IL-6), a major inflammatory cytokine, is a potent activator of STAT3. In this study, we report that EBV-infected immortalized nasopharyngeal epithelial (NPE) cells often acquire an enhanced response to IL-6-induced STAT3 activation to promote their growth and invasive properties. Interestingly, this enhanced IL-6/STAT3 response was mediated by overexpression of IL-6 receptor (IL-6R). Furthermore, IL-6R overexpression enhanced IL-6-induced STAT3 activation in uninfected immortalized NPE cells in vitro, and promoted growth and tumorigenicity of EBV-positive NPC cell line (C666-1) in vivo. Moreover, it is shown for the first time that IL-6R was overexpressed in clinical specimens of NPC. IL-6 expression could also be strongly detected in the stromal cells of NPC and a higher circulating level of IL-6 was found in the sera of advance-staged NPC patients compared to the control subjects. Therefore, IL-6R overexpression, coupled with enhanced IL-6/STAT3 signaling may facilitate the malignant transformation of EBV-infected premalignant NPE cells into cancer cells, and enhance malignant properties of NPC cells. © 2013 Zhang et al.published_or_final_versio

    Risk of Liver Injury Associated with Chinese Herbal Products Containing Radix bupleuri in 639,779 Patients with Hepatitis B Virus Infection

    Get PDF
    and the risk of hospitalisation related to liver injury among HBV-infected patients in Taiwan. were assessed for any dose-response relationship. was 2.19 (95% CI: 1.66 to 2.89). The results using the case-crossover design remained similar. in HBV-infected patients might increase their risks of liver injury. Further studies are indicated to corroborate the above findings

    Association of decreased mitochondrial DNA content with ovarian cancer progression

    Get PDF
    Mitochondrial DNA (mtDNA) content in ovarian carcinomas was assessed by quantitative PCR. Results show that mtDNA content in tumour cell was significantly higher than that in normal ovary. Change in mtDNA content was not related with patients' age or tumour stages. However, the average mtDNA copy number in pathological low-grade tumours was over two-fold higher than that in high-grade carcinomas (P=0.012). Moreover, type I carcinomas also had a significantly higher mtDNA copy number than in type II carcinomas (P=0.019). Change in mtDNA content might be an important genetic event in the progression of ovarian carcinomas

    Establishment of an AAV Reverse Infection-Based Array

    Get PDF
    Background: The development of a convenient high-throughput gene transduction approach is critical for biological screening. Adeno-associated virus (AAV) vectors are broadly used in gene therapy studies, yet their applications in in vitro high-throughput gene transduction are limited. Principal Findings: We established an AAV reverse infection (RI)-based method in which cells were transduced by quantified recombinant AAVs (rAAVs) pre-coated onto 96-well plates. The number of pre-coated rAAV particles and number of cells loaded per well, as well as the temperature stability of the rAAVs on the plates, were evaluated. As the first application of this method, six serotypes or hybrid serotypes of rAAVs (AAV1, AAV2, AAV5/5, AAV8, AAV25 m, AAV28 m) were compared for their transduction efficiencies using various cell lines, including BHK21, HEK293, BEAS-2BS, HeLaS3, Huh7, Hepa1-6, and A549. AAV2 and AAV1 displayed high transduction efficiency; thus, they were deemed to be suitable candidate vectors for the RI-based array. We next evaluated the impact of sodium butyrate (NaB) treatment on rAAV vectormediated reporter gene expression and found it was significantly enhanced, suggesting that our system reflected the biological response of target cells to specific treatments. Conclusions/Significance: Our study provides a novel method for establishing a highly efficient gene transduction arra
    corecore