6,502 research outputs found

    Efficacy of essential oil of Piper aduncum against nymphs and adults of Diaphorina citri.

    Get PDF
    Insecticide application is the main way to control Diaphorina citri. However, it causes environmental contamination, has a negative impact on beneficial organisms, and leads to psyllid resistance. The essential oil of Piper aduncum has low toxicity towards the environment and contains dillapiol, which was proven to be effective against several crop pests. Here, we studied its efficacy against nymphs and adults of D. citri under laboratory conditions. Oils with three concentrations of dillapiol (65.2%, 76.6%, and 81.6%) at 0.5%, 0.75%, and 1.0% dilutions plus 0.025% adjuvant were tested. All treatments caused 90?100% mortality in nymphs. Topical treatments with oil containing 76.6% and 81.6% of dillapiol at 0.75% and 1% dilutions were effective (mortality less or equal 80%) in adults. However, the essential oil showed no residual activity against adults (mortality bigger or equal 30%). Because of its high efficacy against nymphs and adults, P. aduncum is a promising botanical insecticide for use in integrated pest management of D. citri

    Efficacy of essential oil of Piper aduncum against nymphs and adults of Diaphorina citri.

    Get PDF
    Insecticide application is the mainway to control Diaphorina citri. However, it causes environmental contamination, has a negative impact on beneficial organisms and leads to psyllid resistance. The essential oil of Piper aduncum has low toxicity towards the environment and contains dillapiol, which has proven to be effective against several crop pests. Here, we studied its efficacy against nymphs and adults of D. citri under laboratory conditions. Oils with three concentrations of dillapiol (69.3, 79.9 and 85.4%) at 0.5, 0.75 and 1.0% dilutions plus 0.025% adjuvant were tested

    Características biológicas e parasitismo de Telenomus remus em ovos de Corcyra cephalonica, sob diferentes períodos de exposição ao parasitismo.

    Get PDF
    O objetivo deste trabalho foi avaliar as características biológicas e a porcentagem de parasitismo de T. remus em ovos do hospedeiro alternativo C. cephalonica, em diferentes períodos de exposição ao parasitismo, para selecionar o melhor método de criação do parasitoide neste hospedeiro. O experimento foi conduzido em sala climatizada (T: 25±2°C; UR: 70±10%; Fotofase: 12h), com delineamento inteiramente casualizado, sendo três tratamentos (períodos de exposição: 24, 48 e 72h) e 20 repetições. Em tubos de vidro de fundo chato, foram individualizadas fêmeas recém-emergidas (até 24h) de T. remus e alimentadas com mel. Aproximadamente 100 ovos inviabilizados de C. cephalonica foram colados com cola atóxica (30%) em cartelas de papel e oferecidos às fêmeas. O parasitismo foi permitido por diferentes períodos, de acordo com cada tratamento. Avaliou-se: porcentagem de parasitismo, duração do período ovo-adulto; viabilidade; razão sexual; e longevidade das fêmeas. Não houve diferença significativa entre os tratamentos avaliados, sendo que as variações verificadas entre o menor (24h) e o maior (72h) período de exposição ao parasitismo nos parâmetros avaliados foram: porcentagem de parasitismo (29,26% e 36,05%), período ovo-adulto (13,71 e 14 dias), viabilidade (80,76% e 74,86%), razão sexual (0,77 e 0,68 fêmeas) e longevidade (7,65 e 10,08 dias), respectivamente. Assim, estes resultados indicam que não é necessário um maior período de exposição ao parasitismo quando T. remus é criado em ovos do hospedeiro alternativo C. cephalonica. Ainda, estes resultados sugerem que a baixa porcentagem de parasitismo pode estar correlacionada com o comportamento pré-imaginal do inseto relacionado ao hospedeiro natural (Spodoptera frugiperda) onde é criado por sucessivas gerações, o que pode ser corroborado com a alta viabilidade verificada, sinalizando C. cephalonica como um hospedeiro alternativo em potencial

    JUNO Conceptual Design Report

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using an underground liquid scintillator detector. It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants in Guangdong, China. The experimental hall, spanning more than 50 meters, is under a granite mountain of over 700 m overburden. Within six years of running, the detection of reactor antineutrinos can resolve the neutrino mass hierarchy at a confidence level of 3-4σ\sigma, and determine neutrino oscillation parameters sin2θ12\sin^2\theta_{12}, Δm212\Delta m^2_{21}, and Δmee2|\Delta m^2_{ee}| to an accuracy of better than 1%. The JUNO detector can be also used to study terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard Model. The central detector contains 20,000 tons liquid scintillator with an acrylic sphere of 35 m in diameter. \sim17,000 508-mm diameter PMTs with high quantum efficiency provide \sim75% optical coverage. The current choice of the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of detected photoelectrons per MeV is larger than 1,100 and the energy resolution is expected to be 3% at 1 MeV. The calibration system is designed to deploy multiple sources to cover the entire energy range of reactor antineutrinos, and to achieve a full-volume position coverage inside the detector. The veto system is used for muon detection, muon induced background study and reduction. It consists of a Water Cherenkov detector and a Top Tracker system. The readout system, the detector control system and the offline system insure efficient and stable data acquisition and processing.Comment: 328 pages, 211 figure

    Construction and On-site Performance of the LHAASO WFCTA Camera

    Full text link
    The focal plane camera is the core component of the Wide Field-of-view Cherenkov/fluorescence Telescope Array (WFCTA) of the Large High-Altitude Air Shower Observatory (LHAASO). Because of the capability of working under moonlight without aging, silicon photomultipliers (SiPM) have been proven to be not only an alternative but also an improvement to conventional photomultiplier tubes (PMT) in this application. Eighteen SiPM-based cameras with square light funnels have been built for WFCTA. The telescopes have collected more than 100 million cosmic ray events and preliminary results indicate that these cameras are capable of working under moonlight. The characteristics of the light funnels and SiPMs pose challenges (e.g. dynamic range, dark count rate, assembly techniques). In this paper, we present the design features, manufacturing techniques and performances of these cameras. Finally, the test facilities, the test methods and results of SiPMs in the cameras are reported here.Comment: 45 pages, 21 figures, articl

    Does or did the supernova remnant Cassiopeia A operate as a PeVatron?

    Full text link
    For decades, supernova remnants (SNRs) have been considered the prime sources of Galactic Cosmic rays (CRs). But whether SNRs can accelerate CR protons to PeV energies and thus dominate CR flux up to the knee is currently under intensive theoretical and phenomenological debate. The direct test of the ability of SNRs to operate as CR PeVatrons can be provided by ultrahigh-energy (UHE; Eγ100E_\gamma \geq 100~TeV) γ\gamma-rays. In this context, the historical SNR Cassiopeia A (Cas A) is considered one of the most promising target for UHE observations. This paper presents the observation of Cas A and its vicinity by the LHAASO KM2A detector. The exceptional sensitivity of LHAASO KM2A in the UHE band, combined with the young age of Cas A, enabled us to derive stringent model-independent limits on the energy budget of UHE protons and nuclei accelerated by Cas A at any epoch after the explosion. The results challenge the prevailing paradigm that Cas A-type SNRs are major suppliers of PeV CRs in the Milky Way.Comment: 11 pages, 3 figures, Accepted by the APJ

    Activated Human CD4+CD45RO+ Memory T-Cells Indirectly Inhibit NLRP3 Inflammasome Activation through Downregulation of P2X7R Signalling

    Get PDF
    Inflammasomes are multi-protein complexes that control the production of pro-inflammatory cytokines such as IL-1β. Inflammasomes play an important role in the control of immunity to tumors and infections, and also in autoimmune diseases, but the mechanisms controlling the activation of human inflammasomes are largely unknown. We found that human activated CD4+CD45RO+ memory T-cells specifically suppress P2X7R-mediated NLRP3 inflammasome activation, without affecting P2X7R-independent NLRP3 or NLRP1 inflammasome activation. The concomitant increase in pro-IL-1β production induced by activated memory T-cells concealed this effect. Priming with IFNβ decreased pro-IL-1β production in addition to NLRP3 inflammasome inhibition and thus unmasked the inhibitory effect on NLRP3 inflammasome activation. IFNβ suppresses NLRP3 inflammasome activation through an indirect mechanism involving decreased P2X7R signaling. The inhibition of pro-IL-1β production and suppression of NLRP3 inflammasome activation by IFNβ-primed human CD4+CD45RO+ memory T-cells is partly mediated by soluble FasL and is associated with down-regulated P2X7R mRNA expression and reduced response to ATP in monocytes. CD4+CD45RO+ memory T-cells from multiple sclerosis (MS) patients showed a reduced ability to suppress NLRP3 inflammasome activation, however their suppressive ability was recovered following in vivo treatment with IFNβ. Thus, our data demonstrate that human P2X7R-mediated NLRP3 inflammasome activation is regulated by activated CD4+CD45RO+ memory T cells, and provide new information on the mechanisms mediating the therapeutic effects of IFNβ in MS

    Measurement of ultra-high-energy diffuse gamma-ray emission of the Galactic plane from 10 TeV to 1 PeV with LHAASO-KM2A

    Full text link
    The diffuse Galactic γ\gamma-ray emission, mainly produced via interactions between cosmic rays and the interstellar medium and/or radiation field, is a very important probe of the distribution, propagation, and interaction of cosmic rays in the Milky Way. In this work we report the measurements of diffuse γ\gamma-rays from the Galactic plane between 10 TeV and 1 PeV energies, with the square kilometer array of the Large High Altitude Air Shower Observatory (LHAASO). Diffuse emissions from the inner (15<l<12515^{\circ}<l<125^{\circ}, b<5|b|<5^{\circ}) and outer (125<l<235125^{\circ}<l<235^{\circ}, b<5|b|<5^{\circ}) Galactic plane are detected with 29.1σ29.1\sigma and 12.7σ12.7\sigma significance, respectively. The outer Galactic plane diffuse emission is detected for the first time in the very- to ultra-high-energy domain (E>10E>10~TeV). The energy spectrum in the inner Galaxy regions can be described by a power-law function with an index of 2.99±0.04-2.99\pm0.04, which is different from the curved spectrum as expected from hadronic interactions between locally measured cosmic rays and the line-of-sight integrated gas content. Furthermore, the measured flux is higher by a factor of 3\sim3 than the prediction. A similar spectrum with an index of 2.99±0.07-2.99\pm0.07 is found in the outer Galaxy region, and the absolute flux for 10E6010\lesssim E\lesssim60 TeV is again higher than the prediction for hadronic cosmic ray interactions. The latitude distributions of the diffuse emission are consistent with the gas distribution, while the longitude distributions show clear deviation from the gas distribution. The LHAASO measurements imply that either additional emission sources exist or cosmic ray intensities have spatial variations.Comment: 12 pages, 8 figures, 5 tables; accepted for publication in Physical Review Letters; source mask file provided as ancillary fil
    corecore