113 research outputs found

    Citizens Vote to Act: smart contracts for the management of water resources in smart cities

    Get PDF
    Smart cities leverage Information and Communication Technologies (ICTs) to enhance the quality of urban services. However, it is nowadays clear that the success of a smart city largely depends on the level of engagement of its citizens. In this paper we explore to what extent disruptive blockchain technologies can be used to incentivise the democratic participation of citizen. The investigated approach extends the standard IoT cycle 1) sense data, 2) cloudify and elaborate them, and 3) push information to the users. Here, the user takes an active role by means of data-informed votes on policies, therefore influencing behaviours. We illustrate such an approach by means of a proof-of-concept decentralised application (dApp) supporting the negotiation of polices for the management of urban water resources. The dApp consists of a smart contract that manages the execution of other smart contracts (the policies) according to the data-driven choices of the community. This use case demonstrates how suitably blockchain technologies can support fair and safe access to data and user engagement in smart cities

    Scenarios for Educational and Game Activities using Internet of Things Data

    Get PDF
    Raising awareness among young people and changing their behavior and habits concerning energy usage and the environment is key to achieving a sustainable planet. The goal to address the global climate problem requires informing the population on their roles in mitigation actions and adaptation of sustainable behaviors. Addressing climate change and achieve ambitious energy and climate targets requires a change in citizen behavior and consumption practices. IoT sensing and related scenario and practices, which address school children via discovery, gamification, and educational activities, are examined in this paper. Use of seawater sensors in STEM education, that has not previously been addressed, is included in these educational scenaria

    Delivering elder-care environments utilizing TV-channel based mechanisms

    Get PDF
    In this paper, we present a smart environment for elderly. What makes the development of such system challenging is that the concept of smartness for elderly brings to the extreme the idea of invisibility of the technology. In our experience, elders are well-disposed to new technologies, provided that those will not require significant changes - namely, they are invisible - to their habits. Starting from this consideration, 200 caregivers responses were collected by questionnaire, so as to better understand elders' needs and habits. A system was subsequently developed allowing elders to access a number of "modern web services" as standard TV channels: at channel 43 there is the health status, at channel 45 the photos of the family, at 46 the agenda of the week, just to mention few of the available services. The content of such services is automatically generated by the smart devices in the environment and is managed by the caregivers (e.g., family members) by simple web apps. Fourteen families were asked to install the system in their house. The results of these experiments confirm that the proposed system is considered effective and user-friendly by elders

    eIDeCert: a user-centric solution for mobile identification

    No full text
    The necessity to certify one's identity for different purposes and the evolution of mobile technologies have led to the generation of electronic devices such as smart cards, and electronic identities designed to meet daily needs. Nevertheless, these mechanisms have a problem: they don't allow the user to set the scope of the information presented. That problem introduces interesting security and privacy challenges and requires the development of a new tool that supports user-centrity for the information being handled. This article presents eIDeCert, a tool for the management of electronic identities (eIDs) in a mobile environment with a user-centric approach. Taking advantage of existing eCert technology we will be able to solve a real problem. On the other hand, the application takes us to the boundary of what the technology can cope with: we will assess how close we are to the boundary, and we will present an idea of what the next step should be to enable us to reach the goal

    Wireless Sensor Networks in Structural Health Monitoring: a Modular Approach

    Get PDF
    In this paper, we present the Modular Monitoring System (MMS), a low-power wireless architecture dedicated to Structural Health Monitoring (SHM) applications. Our solution features an easily customizable modular architecture, fulfilling the needs of many SHM applications. The MMS supports mesh network topology and offers excellent coverage and reliability, taking advantage of Wireless Sensor Networks (WSN) technology. In this preliminary work we show how the flexibility of our approach offers great advantages with respect to the current state-of-the-art systems dedicated to SHM

    Application of federated learning techniques for arrhythmia classification using 12-lead ECG signals

    Full text link
    Artificial Intelligence-based (AI) analysis of large, curated medical datasets is promising for providing early detection, faster diagnosis, and more effective treatment using low-power Electrocardiography (ECG) monitoring devices information. However, accessing sensitive medical data from diverse sources is highly restricted since improper use, unsafe storage, or data leakage could violate a person's privacy. This work uses a Federated Learning (FL) privacy-preserving methodology to train AI models over heterogeneous sets of high-definition ECG from 12-lead sensor arrays collected from six heterogeneous sources. We evaluated the capacity of the resulting models to achieve equivalent performance compared to state-of-the-art models trained in a Centralized Learning (CL) fashion. Moreover, we assessed the performance of our solution over Independent and Identical distributed (IID) and non-IID federated data. Our methodology involves machine learning techniques based on Deep Neural Networks and Long-Short-Term Memory models. It has a robust data preprocessing pipeline with feature engineering, selection, and data balancing techniques. Our AI models demonstrated comparable performance to models trained using CL, IID, and non-IID approaches. They showcased advantages in reduced complexity and faster training time, making them well-suited for cloud-edge architectures.Comment: Preprint of International Symposium on Algorithmic Aspects of Cloud Computing (ALGOCLOUD) 202

    Trust Nobody: Privacy-Preserving Proofs for Edited Photos with Your Laptop

    Get PDF
    The Internet has plenty of images that are transformations (e.g., resize, blur) of confidential original images. Several scenarios (e.g., selling images over the Internet, fighting disinformation, detecting deep fakes) would highly benefit from systems allowing to verify that an image is the result of a transformation applied to a confidential authentic image. In this paper, we focus on systems for proving and verifying the correctness of transformations of authentic images guaranteeing: 1) confidentiality (i.e., the original image remains private), 2) efficient proof generation (i.e., the proof certifying the correctness of the transformation can be computed with a common laptop) even for high-resolution images, 3) authenticity (i.e., only the advertised transformations have been applied) and 4) fast detection of fraud proofs. Our contribution consists of the following results: - We present new definitions following in part the ones proposed by Naveh and Tromer [IEEE S&P 2016] and strengthening them to face more realistic adversaries. - We propose techniques leveraging the way typical transformations work to then efficiently instantiate ZK-snarks circumventing the major bottlenecks due to claims about large pre-images of cryptographic hashes. - We present a 1st construction based on an ad-hoc signature scheme and an and-hoc cryptographic hash function, obtaining for the first time all the above 4 properties. - We present a 2nd construction that, unlike in previous results, works with the signature scheme and cryptographic hash function included in the C2PA specifications. Experimental results confirm the viability of our approach: in our 1st construction, an authentic transformation (e.g., a resize or a crop) of a high-resolution image of 30 MP can be generated on a common 8 cores PC in about 41 minutes employing less than 4 GB of RAM. Our 2nd construction is roughly one order of magnitude slower than our 1st construction. Prior results instead either require expensive computing resources or provide unsatisfying confidentiality

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    • …
    corecore