49 research outputs found

    Next Generation of Hybrid Threats

    Get PDF

    User-oriented Network Security Policy Specification

    Get PDF
    The configuration and management of security controls and applications is complex and not well understood by the majority of end-users (i.e. it typically requires specific skills). The security policy language simplifies this task and reduces the number of errors and anomalies. This paper proposes the specification of the two mechanisms for defining user’s security policies, namely High-level Security Policy Language (HSPL) and Medium-level Security Policy Language (MSPL). HSPL is suitable for expressing the protection requirements of typical non-technical users, while MSPL is a lower-levelabstraction useful for expressing specific configurations of security controls in a generic format (as such it is more appealing for technical users)

    Security Automation using Traffic Flow Modeling

    Get PDF
    The growing trend towards network “softwarization” allows the creation and deployment of even complex network environments in a few minutes or seconds, rather than days or weeks as required by traditional methods. This revolutionary approach made it necessary to seek automatic processes to solve network security problems. One of the main issues in the automation of network security concerns the proper and efficient modeling of network traffic. In this paper, we describe two optimized Traffic Flows representation models, called Atomic Flows and Maximal Flows. In addition to the description, we have validated and evaluated the proposed models to solve two key network security problems - security verification and automatic configuration - showing the advantages and limitations of each solution

    A demonstration of VEREFOO: an automated framework for virtual firewall configuration

    Get PDF
    Nowadays, security automation exploits the agility characterizing network virtualization to replace the traditional error-prone human operations. This dynamism allows user-specified high-level intents to be rapidly refined into the concrete configuration rules which should be deployed on virtual security functions. In this revolutionary context, this paper proposes the demonstration of a novel security framework based on an optimized approach for the automatic orchestration of virtual distributed firewalls. The framework provides formal guarantees for the firewall configuration correctness and minimizes the size of the firewall allocation scheme and rule set. The framework produces rules that can be deployed on multiple types of real virtual function implementations, such as iptables, eBPF firewalls and Open vSwitch

    Security automation for multi-cluster orchestration in Kubernetes

    Get PDF
    In the latest years, multi-domain Kubernetes architectures composed of multiple clusters have been getting more frequent, so as to provide higher workload isolation, resource availability flexibility and scalability for application deployment. However, manually configuring their security may lead to inconsistencies among policies defined in different clusters, or it may require knowledge that the administrator of each domain cannot have. Therefore, this paper proposes an automatic approach for the automatic generation of the network security policies to be deployed in each cluster of a multi-domain Kubernetes deployment. The objectives of this approach are to reduce of configuration errors that human administrators commonly make, and to create transparent cross-cluster communications. This approach has been implemented as a framework named Multi-Cluster Orchestrator, which has been validated in realistic use cases to assess its benefits to Kubernetes orchestration

    Towards an Efficient Management and Orchestration Framework for Virtual Network Security Functions

    Get PDF
    The recent years have witnessed a growth in the number of users connected to computer networks, due mainly to megatrends such as Internet of Things (IoT), Industry 4.0, and Smart Grids. Simultaneously, service providers started offering vertical services related to a specific business case (e.g., automotive, banking, and e-health) requiring more and more scalability and flexibility for the infrastructures and their management. NFV and SDN technologies are a clear way forward to address these challenges even though they are still in their early stages. Security plays a central role in this scenario, mainly because it must follow the rapid evolution of computer networks and the growing number of devices. The main issue is to protect the end-user from the increasing threats, and for this reason, we propose in this paper a security framework compliant to the Security-as-a-Service paradigm. In order to implement this framework, we leverage NFV and SDN technologies, using a user-centered approach. This allows to customize the security service starting from user preferences. Another goal of our work is to highlight the main relevant challenges encountered in the design and implementation of our solution. In particular, we demonstrate how significant is to choose an efficient way to configure the Virtual Network Security Functions in terms of performance. Furthermore, we also address the nontrivial problem of Service Function Chaining in an NFV MANO platform and we show what are the main challenges with respect to this problem

    Work-in-Progress: A Formal Approach to Verify Fault Tolerance in Industrial Network Systems

    Get PDF
    Distributed systems are extremely difficult to design and implement correctly because they must handle both system correctness and device failures. Most of the work focuses on the first aspect, and in particular, on the correctness of security and network configuration. The large demand for availability and reliability for critical services is actually pushing new architectures that tolerate faults, but a-priori analysis of redundancy and recovery features is still limited. To this end, we present a framework to design and formally verify the persistence of network properties, even in case of failures. The solution considers both nodes and links failure, and it is based on a formal model that takes both network topology and network device configurations into account. In contrast, most of the existing approaches only consider network topology. By analyzing the formal model, the framework can check whether the specified network services are still available after failures, and in case of success, it outputs a possible configuration of the devices to be used for automatic recovery

    Automation for network security configuration: state of the art and research trends

    Get PDF
    The size and complexity of modern computer networks are progressively increasing, as a consequence of novel architectural paradigms such as the Internet of Things and network virtualization. Consequently, a manual orchestration and configuration of network security functions is no more feasible, in an environment where cyber attacks can dramatically exploit breaches related to any minimum configuration error. A new frontier is then the introduction of automation in network security configuration, i.e., automatically designing the architecture of security services and the configurations of network security functions, such as firewalls, VPN gateways, etc. This opportunity has been enabled by modern computer networks technologies, such as virtualization. In view of these considerations, the motivations for the introduction of automation in network security configuration are first introduced, alongside with the key automation enablers. Then, the current state of the art in this context is surveyed, focusing on both the achieved improvements and the current limitations. Finally, possible future trends in the field are illustrated

    Protecting In-Vehicle Services : Security-Enabled SOME/IP Middleware

    Get PDF
    With every generation, vehicles are becoming smarter and more oriented toward information and communications technology (ICT). However, computerization is posing unforeseen challenges in a sector for which the first goal must be safety: car hacking has been shown to be a real threat. This article presents a novel mechanism to provide improved security for applications executed in the vehicle based on the principle of defining exactly who can talk to whom. The proposed security framework targets Ethernet-based communications and is tightly integrated within the emerging Scalable service-Oriented MiddlewarE over IP (SOME/IP) middleware. No complex configurations are needed: simple high-level rules, clearly stating the communications allowed, are the only element required to enable the security features. The designed solution has been implemented as a proof of concept (PoC) inside the vsomeip stack to evaluate the validity of the approach proposed: experimental measurements confirm that the additional overhead introduced in end-to-end communication is negligible
    corecore