
Research Article
Towards an Efficient Management and Orchestration
Framework for Virtual Network Security Functions

Ignazio Pedone , Antonio Lioy, and Fulvio Valenza

Politecnico di Torino, Dip. Automatica e Informatica, Torino, Italy

Correspondence should be addressed to Ignazio Pedone; ignazio.pedone@polito.it

Received 9 May 2019; Accepted 20 September 2019; Published 12 November 2019

Academic Editor: Prosanta Gope

Copyright © 2019 Ignazio Pedone et al. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

�e recent years have witnessed a growth in the number of users connected to computer networks, due mainly to megatrends such
as Internet of �ings (IoT), Industry 4.0, and Smart Grids. Simultaneously, service providers started o�ering vertical services
related to a speci�c business case (e.g., automotive, banking, and e-health) requiring more and more scalability and �exibility for
the infrastructures and their management. NFV and SDN technologies are a clear way forward to address these challenges even
though they are still in their early stages. Security plays a central role in this scenario, mainly because it must follow the rapid
evolution of computer networks and the growing number of devices.�emain issue is to protect the end-user from the increasing
threats, and for this reason, we propose in this paper a security framework compliant to the Security-as-a-Service paradigm. In
order to implement this framework, we leverage NFV and SDN technologies, using a user-centered approach. �is allows to
customize the security service starting from user preferences. Another goal of our work is to highlight the main relevant challenges
encountered in the design and implementation of our solution. In particular, we demonstrate how signi�cant is to choose an
e�cient way to con�gure the Virtual Network Security Functions in terms of performance. Furthermore, we also address the
nontrivial problem of Service Function Chaining in an NFV MANO platform and we show what are the main challenges with
respect to this problem.

1. Introduction

Cybercrime has grown faster in the past years, attacks are
evolving rapidly, and organizations are forced to continuously
update their cybersecurity and cyberdefence techniques. As
reported in [1], in between 2014 and 2016, cyberattacks have
evolved in two directions: growing number of threats and
impact which the attack has on its target. �e Verizon report
explicitly describes [2], nowadays, cyberattacks are very
tangible threats. Actually, about 76% of breaches were �-
nancially motivated (i.e., aimed at stealing secrets, intellectual
properties, personal data, and sensitive information).

�e Internet Service Providers (ISPs) that give connec-
tivity to those devices are challenged by this scenario and
need to provide more and more �exible, scalable, and
customizable security solutions to their clients for protecting
their data and privacy.

To reduce risks, various cybersecurity components are
usually adopted, such as antimalware, �rewall, virtual private
network (VPN), and parental control functions. Several ISPs
have started to o�er their customers security controls
implemented at the ISP premises (e.g., data centres). Of
course, providing security services to hundreds of thousands
or even millions of users is a challenging task which shows
several limitations of traditional network technologies.
Network Function Virtualisation (NFV) and Software-De-
�ned Networking (SDN) are technologies that grant to the
ISPs a reliable and scalable solution to address the end-user
security problem.

NFV exploits a virtual infrastructure where network and
security functions are implemented by software components
called Virtual Network Functions (VNFs). NFV decouples
software and hardware. For instance, VNFs can run in either
virtual machines (VMs) or software containers, hosted on

Hindawi
Security and Communication Networks
Volume 2019, Article ID 2425983, 11 pages
https://doi.org/10.1155/2019/2425983

mailto:ignazio.pedone@polito.it
https://orcid.org/0000-0001-9637-2404
https://orcid.org/0000-0002-8471-3029
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/2425983

standard high-volume servers (or ad hoc hardware), so that
they can be easily deployed and removed on demand.

On another hand, the SDN paradigm provides a net-
working architecture where the control and forwarding
planes are separated, and control functions are directly
programmable. 'is migration of traffic control, from tra-
ditionally embedded and hard-wired individual network
devices to programmable computing equipment, enables the
abstraction of the communication infrastructure so that
applications and services can be designed, implemented, and
deployed by considering the network as a logical entity. In
summary, SDN introduces unprecedented flexibility in the
network, in particular by allowing dynamic fine-grained
selection of arbitrary traffic flows that can be (re)routed
through different network paths according to the control
snap decisions when they are needed. 'ese features can be
leveraged to provide each user with the required security
services; for instance, traffic flows concerning different users
can be dynamically directed to different sets of security
controls.

Even if these appealing technologies offer significant
advantages in terms of flexibility, they also introduce new
challenges such as the correct configuration of the network
security functions [3].

Indeed, the impact of the “human error factor” on
continuously growing networks is certainly not negligible, as
several studies have proved. Nearly 60% of the security
breaches, which occurred in 2015, originated from errors
made by system and network administrators [4].

A new approach among ISPs is rising: the Security-as-a-
Service (SECaaS) [5] paradigm. 'is allows to relief the user
from complex security configurations and grants an always
updated security service.

We started our work from [6], in which a complete user-
centric framework was proposed to provide the personal
security of a user. We applied this approach to an NFV
Infrastructure and implemented an evolution of that
framework. In the process, we addressed the following three
main problems: the integration of a policy manager in an
NFV environment, the configuration of Virtual Network
Security Functions (vNSFs), and the Service Function
Chaining in NFV Management and Orchestration (NFV
MANO).

'e first problem addressed in this research is strongly
related to the concept of policy-based management dis-
cussed in [7]. Indeed, the ETSI standards clearly express the
need for an integrated security policy manager, which de-
fines the way to choose the VNFs and to link and configure
them. Our framework gives an answer to that requirement
and tries to bring to light the major problems encountered in
this process of integration.

'e second problem is related to configuration. 'is is a
nontrivial issue considering the number of tools available on
the market and the differences between the vendors that
develop the VNFs. 'e choice for the most efficient and
reliable tool could make the difference in contexts in which
scalability and flexibility are not expendable. We have ex-
plored the major tools on the market, and we have chosen
the ones more suitable for the problem.

In the end, we addressed the last problem, which some
NFV MANO platforms do not even consider (e.g., Open
Baton): the steering of the traffic leveraging Service Function
Chaining (SFC) and/or VNF Forwarding Graphs (VNFFGs).
We proposed and tested a solution which integrates in our
framework this feature, giving full support for VNFFGs.

'e rest of the paper is structured as follows. Section 2
briefly recalls the main works in literature that focus on
SECaaS in an NFV environment, SFC, VNFFGs, and NFV
MANO. Section 3 presents the proposed architecture and
framework, while Section 4 discusses the configuration of
the vNSFs and, finally, Section 5 examines the creation of
Service Function Chains with these vNFSs. Finally, Section 6
evaluates our framework and Section 7 concludes the paper.

2. Background and Related Work

'e focus of this paper is centered on the new NFV
Management and Orchestration technologies and the use of
the SECaaS paradigm in order to grant security to the end-
user. We start by describing the background and the related
works concerning those technologies and the SECaaS
paradigm.

2.1. Security-as-a-Service in an NFV Environment. 'e
concept of SECaaS takes place starting with another notion:
the vNSF. In an NFV environment, indeed, it is possible to
define a particular VNF [8] offering security functionalities
(e.g., vFW, vIDS, and vDPI) and hence called vNSFs. SECaaS
is a new approach based on NFV Orchestration which
deploys security protections by means of vNSFs.'e derived
security services could offer dynamic response for a specific
set of threats addressable with the available vNSFs; scalability
based on the enterprise capabilities; and targeted security
data monitoring and gathering at a specific point in the
network for analysis and remediation.

In the literature, the SECaaS approach has been deeply
investigated in the last few years. For instance, some authors
[9] proposed a “user-centric” approach for the provision of
virtualised security at the network edge. In that paper, a
complete framework design is shown, in which an NFV
Infrastructure is used to provide security services for the
end-user terminals. 'e vNSFs, which in that case were
called Personal Security Applications (PSAs), were driven by
a policy-based management system. 'at system was in
charge of gathering user policies (expressed in an high-level
language: the High-level Security Policy Language (HSPL))
and the admin policies (expressed in a medium-level lan-
guage: the Medium-level Security Policy Language (MSPL));
translating those policies in a service graph, which describes
the needed PSAs and the links between them, and a set of
low-level configurations for the PSAs used; and enforcing
those low-level configurations on the PSAs deployed starting
from the service graph provided.

Another SECaaS example is shown in [10], where the
authors provide an extensible, adaptable, fast, low-cost, and
trustworthy cybersecurity solution. 'is aims at delivering
IT security as an integrated service of virtual network

2 Security and Communication Networks

infrastructures that can be tailored for ISPs and enterprise
consumers. In this case, vNSFs are dynamically instantiated
and configured after a malicious event or a threat. Fur-
thermore, the choice of the attack remediation is driven by a
Data Analysis and Remediation Engine (DARE); this engine
features analytical components and is capable of predicting
specific vulnerabilities and attacks. 'e DARE relies on
continuous monitoring of the network traffic, using mon-
itoring vNSFs, and translates their observation into a col-
lection of data capable of inferring events which a single
vNSF could not.

2.2. /reat Analysis. As specified by [11], there are many
threats that involve the NFV Infrastructure itself, at the
NFVI, VNF, and NFVMANO layers, respectively. However,
our approach aims at solving threats that affect user’s
perspective, using a SECaaS approach. As claimed before,
errors in network security configuration can create vul-
nerabilities that in turn affect the overall security, decrease
the network throughput, and increase the maintenance
costs.

2.3. Service Function Chain and VNFFG. IETF defines a
Service Function Chain [12] as a set of abstract service
functions and ordering constraints that must be applied to
packets and/or frames and/or flows selected as a result of
classification. 'e classification is the process of matching
the traffic flows against the policy for the subsequent ap-
plication of the required network service functions. 'e
Classifier is the element that performs the classification. In
other words, the SFC is the mechanism which allows for-
warding the traffic of an end-to-end service and defining in
which VNFs the latter must pass through.

ETSI, instead, defines a similar object called VNF For-
warding Graph (VNFFG) [13], a graph whose nodes rep-
resent the VNFs and the logical links define the connection
between them; the latter could be unidirectional, bi-
directional, multicast, and/or broadcast. 'e simplest ex-
ample of VNFFG is a single chain of VNFs.We have also two
additional elements: the Forwarding Service Path (FSP) and
the Classifier; the first one is the equivalent of an SFC; the
second is the Classifier which is associated with the FSP in
order to classify the traffic on the right path.

In [14], a use case of SFC applied to NFV and SDN
technologies is reported. In particular, an SFC Orchestrator
capable of dynamically updating the Service Function Paths
at any time has been proposed.'e utility of this approach is
clear during a fault or a decrease in the performance of a
VNF. In that case, all the other VNFs in the chain suffer as far
as the previous one is a bottleneck. A remediation to this
problem is scaling out the affected VNF though we need to
reconfigure also the SFPs in order to cleverly redistribute the
traffic along the new instances.

One of the challenges which we aim to address regarding
the SFC is partially discussed in [15]. Mechtri et al. proposed
a new End-to-End SFC Orchestration Framework, which is
compliant with ETSI NFV MANO, in order to overcome at
least two problems: giving a harmonized service abstraction

and description languages for NFV and SDN requirements
and automating end-to-end service production for agile
NFV services. 'e main reason why we consider another
solution is because we had the aim of completely leveraging
on the existing platforms that have already addressed this
problem without implementing a new NFV MANO.

2.4. Management and Orchestration in NFV MANO.
Management and Orchestration of the NFV Infrastructure
plays a central role in modern computer networks. Cen-
tralizing the deployment, management, and monitoring of
the Virtual Network Functions (VNFs), which give the
possibility to have a complete end-to-end Network Service
(NS), simplifies the way the service providers reach their
users. Our focus in this paper is on the configuration of the
VNFs and the support for Service Function Chaining which
an NFVMANO should provide. In the following, we analyse
the main open source NFVMANO platforms on the market:

(i) Open Source MANO (OSM) (available online at
https://osm.etsi.org) is an ETSI-hosted project to
develop an Open Source NFV MANO framework
stack aligned with ETSI NFV standards. It offers a
multiple Virtual Infrastructure Manager (VIM)
support, which means it could be used with multiple
Infrastructure-as-a-Service technologies (e.g.,
OpenStack, AWS, OpenVIM, and VMware) for the
resource orchestration. OSM allows also to combine
them with different SDN Controller technologies
(e.g., ONOS, floodlight, and ODL) to manage the
underlying connectivity. A monitoring system and
an experimental support for VNFFG are provided as
well. In order to manage the VNFs instance, OSM
adopts Juju of Canonical as VNF Manager.

(ii) Open Baton (available online at https://openbaton.
github.io) is an NFV MANO solution compliant
with the ETSI NFV MANO specifications. It has a
modular architecture, in which a message broker
(RabbitMQ) grants the communication between a
set of different orchestration and supplementary
services. 'e main services offered are the orches-
tration of resources, the monitoring system, and a
set of drivers which allow to use this platform over
multiple VIM technologies. In order to extend Open
Baton for supporting other VIMs, it is required to
create a new driver plug-in and a specific VNFM for
this technology. 'is approach gives an interesting
flexibility to the VIM support; indeed, Open Baton
has been the first NFV platform to give support to
Docker Engine as VIM. So far, this platform,
however, does not support SFC or VNFFGs
mechanisms.

(iii) OpenStack Tacker (available online at https://docs.
openstack.org/tacker/latest/) is an additional service
for the OpenStack framework (available online at
https://www.openstack.org). 'is service provides
NFV Orchestration functionalities (e.g., VNFs/NSs
management), leveraging the services included in

Security and Communication Networks 3

https://osm.etsi.org
https://openbaton.github.io
https://openbaton.github.io
https://docs.openstack.org/tacker/latest/
https://docs.openstack.org/tacker/latest/
https://www.openstack.org

the OpenStack IaaS platform (e.g., Neutron, Nova,
and Heat). 'e main advantage of using this plat-
form is the full support for SFC with the service
named networking-sfc and VNFFGs; in theNetwork
Service Descriptor (NSD), we could provide a high-
level description of FSPs and Classifiers as well.

Although NFV MANO technologies are growing fast,
there are still different challenges to address. As the authors
of [16] report, one of the most significant ones is the de-
pendability level of NFV.'is depends on the NFVMANO
platform for two different reasons: the NFV MANO
manages the available resources to provide optimal service;
therefore, it may be used to deal with failures of network
elements efficiently and to improve service dependability;
on the other hand, since the NFV MANO maintains a
global view of the NFV system, it may affect the entire
network as result of a mismanagement. Moreover, that
paper provides a tutorial on these NFV MANO challenges
and gives a clear insight into further research on how to
address those problems. In our paper, we focused our
attention on vNSF configuration and Service Function
Chaining, so we chose the MANO platforms that better
address those challenges and compare them: OSM and
Tacker.

2.5.ConfigurationTools. We explore in this section the main
tools for virtual instance configuration and give an overview
of the options available on the market:

(i) Juju (available online at https://jujucharms.com) is a
tool from Canonical which provides instantiation,
management, monitoring, and scaling of cloud
applications in an efficient and rapid way. We could
perform those actions on different platforms (e.g.,
OpenStack, AWS, Google Platform, and LXD) or
even physical machines (Metal-as-a-Service
(MaaS)). 'e way Juju works is a collection of
Python or Bash scripts called “Charm.” A Charm
provides all needed information to deploy and
configure a virtual instance and the tools for its
monitoring. We need the Charm running on the
instance in order to configure it.

(ii) Ansible (available online at https://www.ansible.
com) is a tool developed by the Ansible Commu-
nity and Red Hat. It performs all the required
operations in order to deploy, manage, and con-
figure a virtual instance via SSH, leveraging a Py-
thon interpreter. 'e operation to be performed on
a virtual instance could be expressed in the form of a
YAML descriptor, which is called a “playbook.” All
the operations performed by Ansible do not require
any software daemon on the instance.

(iii) Chef (available online at https://www.chef.io) is
another tool for deployment and management
automation developed by the Chef company. 'is is
one of the first tools for this purpose and is used by
providers like Facebook, AWS, and Prezi. In this
case, we need a client daemon on the instance in

order to perform the configuration on the virtual
instance.

(iv) Puppet (available online at https://puppet.com) is a
tool for deployment and management automation
developed by Puppet Company. As in the case of
Chef, it requires a software daemon on the instance
in order to execute the actions.

(v) SaltStack (available online at http://www.saltstack.
com) is a tool for the management of virtual in-
stances as the others described above. In this case,
we could have a daemon on the instance (salt
minion) or not (salt ssh) depends on the version.
'e features offered are the same as in Ansible, but
the support for different platforms and the power of
syntax is better in Ansible.

Considering the listed features provided by the analysed
configuration tools, we can conclude that Ansible is the
more suitable platform for use in our case.

3. Framework Design and Architecture

Starting from the premises expressed in the last section, we
now present the whole framework architecture; this was
built to provide the Network Security Service (NSS) for the
end-user. 'e main aspects described in this section are as
follows:

(i) High-level architecture: an overview of the whole
solution architecture

(ii) Security Service Manager (SSM): the management
and orchestration framework for the NSS

(iii) NFV Infrastructure: the infrastructure for the vNSF
deployment

(iv) Solution workflow: a summary of the solution
workflow based on an ISP use case

3.1. High-Level Architecture. Our high-level architecture
composed of two main elements: the Security Service
Manager and the NFV Infrastructure (Figure 1). 'e Se-
curity Service Manager is in charge of the whole NSS or-
chestration. 'e starting point is given by the user, which
could submit a specific set of high-level security policies to
the SSM. 'e latter is in charge of the translation of those
policies to a precise collection of configurations and an
overall description of the Network Security Service in the
form of an NSD. 'e configurations are generated for a
different set of vNSFs, which are implemented in specific
technologies. 'e NSD, instead, is designed for the target
NFVMANO platform (in our case, OSM) and has the aim to
characterize the vNSFs required and the links between them.
After the policy translation process, a service provider could
deploy the NSS of the specific user on its own infrastructure
according to the given policies. 'e SSM is also in charge of
this deployment and its management. For what concerns the
infrastructure, instead, it composed of different Security
Sites; Security Site is a generic Point-of-Presence (PoP) (e.g.,
data centre), which typically consists of a VIM and different

4 Security and Communication Networks

https://jujucharms.com
https://www.ansible.com
https://www.ansible.com
https://www.chef.io
https://puppet.com
http://www.saltstack.com
http://www.saltstack.com

Compute Nodes. A Security Service Manager is able to
manage different geographically distributed Security Sites;
indeed, OSM offers a complete support for the multi-VIM
management and orchestration.

3.2. Security Service Manager. In Figure 1, the main com-
ponents of the Security Service Manager are depicted: Open
Source MANO, the Security Service Controller, and Policy
Services. 'ese elements are designed and implemented to fit
in a fully “containerized” environment; indeed, we adopt
LXD (available online at https://linuxcontainers.org/lxd/
introduction/) as virtualisation technology to deploy the
services linked to our solution. LXD is a next-generation
container technology based on Linux Containers and offers a
user experience similar to virtual machines. 'is virtuali-
sation solution provides also advanced features regarding
security, scalability, network management, resource control,
and device management in a Linux Container context (e.g.,
unprivileged containers, supports for multiple storage back-
ends, and bridge creation/configuration). In our proposed
design, the OSM Release 'ree architecture was extended
adding new containers in charge of providing each specific
service needed by our framework, forming three sets of
containers matching the SSM components. 'e “Policy
Services” containers handle the policy management; in
particular, it provides the following functionalities:

(i) Policy Reconciliation Service: this service provides
the aggregation of the policies from different actors
(e.g., different users and admins).

(ii) Policy Refinement and Optimization: it handles the
translation from high-level security policies to
medium-level security policies; the latter depend on
the types of vNSFs used but not on the specific
vendor technologies. Besides, this service is in
charge to draw up the service graph which defines

the vNSFs to use for the NSS and the links between
them [17, 18].

(iii) Policy Analysis Service: this module is in charge of
the policy analysis in order to find any anomalies
among them [6, 19].

(iv) User Policy Repository (UPR): this is the storage for
all levels of policies and the service graphs.

(v) Consul and Vault: this provides service discovery
functionality and access control for the other
services.

'e second set of containers is the Security Service
Controller (SSC) which is in charge of giving the high-level
functionalities for both end-user and service provider side
(e.g., policy definition and NSS deployment).'e SSC allows
to upload new security policies from the user side and, at the
same time, it manages the automatic instantiation of a new
NSS for a specific user from the service provider side.

In the end, we have the last set of containers, which are
linked to OSM, providing the NFV MANO functionalities:
VCA, SO, and RO. 'e VNF Configuration & Abstraction
(VCA) is a VNF Manager (VNFM) abstraction; the latter
provides the life cycle management of the vNSFs leveraging
Juju functionalities. 'e Resource Orchestrator (RO) is in
charge of the resource orchestration (e.g., deploying vNSFs
and managing the VIM).'e Service Orchestrator (SO) is the
component in charge to the NSS life cycle management (e.g.,
launch, stop, and configure a NSS) and also performs
monitoring tasks on the Network Security Service.

3.3. NFV Infrastructure. 'e infrastructure in our solution
consists of different Security Sites. 'is requires the possi-
bility to abstract the management and orchestration layer
from the infrastructural one. Indeed, this means we could
use different VIM technologies at the same time. Our ar-
chitecture allows to maintain this separation and use

Security Service
Manager

Security
Service

Controller

Policy
Services

Public
network

NFV Infrastructure

Security Site

Security Site

Compute
Node

Compute
Node

Compute
Node

Compute
Node

VIM

VIM

Management & Orchestration

Figure 1: Framework architecture.

Security and Communication Networks 5

https://linuxcontainers.org/lxd/introduction/
https://linuxcontainers.org/lxd/introduction/

multiple VIMs to deploy the instances. In our framework, we
implement a test Security Site with OpenStack as VIM;
OpenStack is a standard de facto for what concerns the open
source IaaS platform and almost every NFV MANO
framework is compliant with it. OpenStack is also capable of
giving every resource required by Open Source MANO (e.g.,
compute, network, and storage) leveraging Nova and
Neutron API.

3.4. Solution Workflow. In Figure 2, we showcase a typical
use case consisting of an ISP which provides a Network
Security Service to an end-user. All start with the user itself,
during the step (1), who defines the high-level policies
through the Policy GUI, which is a Graphical User Interface
exposed by SSC in order to allow the user to manage his
policies. After this action, the high-level policies are stored in
the UPR and an ISP could start the NSS for this specific user.
In order to complete this task, the ISP operates the NSS
Deployer (2) which leverages the Policy Services to reconcile
and refine the user policies (3). In particular, in this phase,
we have the Policy Reconciliation, the translation from
HSPL to MSPL and the provision of the service graph.
'ereafter, the NSS Deployer translates the service graph in a
consistent Network Service Descriptor for the NFV MANO
platform and sends it to the SO together with the MSPL
policies.'e SO at this point (5) leverages the RO in order to
deploy the virtual instance required for the NSS and the
network configuration for the underlying connectivity. In
the end (6), the SO through the VCA enforces the policies on
the vNSFs and so the NSS could be defined “online.” 'e
translation in this process from MSPL to low-level config-
uration is performed by the vNSF itself.

4. vNSF Configuration

One of the most relevant challenges for the NFV Orches-
tration is the configuration and the life cycle management of
the vNSFs. Since we used in our solution OSM as NFV
MANO, the vNSF configuration relies on Juju as VNF
Manager (VNFM); adopting this solution (Juju with OSM)
gives advantages in terms of flexibility for the vendor, who
could embed a series of configurations scripts called “Proxy
Charms” directly in the OSM VNF Descriptor. 'e com-
plication in this case lies in the overhead that is introduced
by Juju in the process of vNSF creation, at least in a limited
resource scenario. We have discussed this strategy and
proposed a new approach for the configuration in order to
avoid this drawback: using Ansible as VNFM.

4.1. First Approach. Starting a Network Security Service
implies the launch of all the required vNSF instances and the
proper configuration of them. In our solution, we perform
this operation in two different steps:

(i) Day-0 configuration: during this step, we provide all
the software and configurations needed by the vNSF
via cloud-init technology, starting from an Ubuntu
cloud image; at the end of the process, we deliver a

fully working vNSF which gives the desired service.
With this peculiar technology, we are able to install
the software packages required, inject the SSH keys,
run arbitrary scripts, and configure the network
interfaces of the instance.

(ii) Day-1 configuration: since the first type of config-
uration stops after the initialisation of the vNSF, we
need to provide a second configuration mechanism
for the Virtual Network Security Function life cycle
management. In order to achieve this result, we
adopted the VNFM suggested and supplied by OSM
framework: Juju.

'e Day-0 configuration has been provided as a tech-
nique to avoid the use of prebuilt software images. 'is
approach allows to save space on the software image re-
pository since we need for this new approach just a small set
of a base cloud image (e.g., Ubuntu 16.04 LTS). On top of
them, as described before, we could configure all the soft-
ware requirements and configurations via cloud-init. 'e
Day-1 configuration, instead, is crucial to avoid the reini-
tialisation of the vNSFs after a change in the behaviour of the
security service. A typical example could be a firewall
reconfiguration during the life cycle of the security service.
With this type of configuration, we could change the settings
of the specific vNSF, acting in this case like a firewall, without
reinitialising neither the vNSF nor the Network Security
Service.

'e way we provide this functionality is via Juju, as
described before. Juju allows to perform a set of actions
triggered by OSM on every specific vNSF (e.g., start, stop,
and set rules), leveraging the mechanisms of the Proxy
Charm (Figure 3). A Proxy Charm is a virtual instance

Security
Service

Controller

Policy
Services

Policy
GUI

NSS
Deployer

RO SO VCA

OSM

vFW vDPI vNSF

NFV Infrastructure

(1)
User

Internet

ISP

(2) (3)

(4)

(5) (6)

Tr
af

fic
 fl

ow
SFC

Figure 2: Solution workflow related to an ISP use case.

6 Security and Communication Networks

(typically an LXD container) which is in charge of the
management operations on the vNSF. 'is virtual instance
embeds a series of Python scripts and libraries which allow to
communicate via SSH to the final vNSF instance and to
execute arbitrary python code in order to manage the vNSF.
'e set of scripts needed from the Proxy Charm have to be
loaded in advance in the VNF Descriptor (VNFD) package.
With this approach, every single vNSF has his own Proxy
Charm and the vendor has the flexibility to customize the
vNSF configuration, without changing anything at the
VNFM layer, directly in the description of the vNSF. Even
though this approach is very flexible and scalable, it has a
consistent drawback: we need a virtual instance for each
single vNSF.'is requirement could be a significant obstacle
especially for NFV MANOs with limited infrastructure
resources.

4.2. Evolution. 'e Juju solution for the second-step vNSF
configuration could appear as a real breakthrough, but
the problem lies in the overhead introduced for the new
instances and their configuration. For our purpose, as in
many real use cases, it is not mandatory to adopt Juju as
VNFM; this is because we need a high-level controller
(the SSC) to perform automatically the actions on the
vNSF after some event on the platform (e.g., remediation
to an attack and change of the user policies). 'is means

we could rely on any system which allows us to configure
the instance during its life cycle (e.g., Puppet, Chef,
Ansible, and SaltStack). We choose Ansible as a re-
placement because it does not require a daemon on the
instance to perform the configurations; other choices
(e.g., Chef and Puppet) would lead us to require that
daemon and call for further configurations and resources
during the virtual instance launching process. For this
reason, we had started to explore Ansible as VNF
Manager evolution for our framework and we proposed
and tested an alternative plug-in mechanism with Ansible
“playbooks” (Figure 3).

A playbook is a file descriptor representing the lan-
guage used by Ansible to describe the operations to be
performed on a virtual instance. 'e single operation is
called task, and the playbook is essentially a collection of
them. One of the most relevant advantages of using Ansible
is the powerful semantics given by the playbook and its
tasks; they offer an easy way to install software packages, to
copy files, and to perform all the typical required opera-
tions on a virtual instance in the form of a YAML de-
scriptor. Besides, another advantage is no need for a
dedicated virtual instance for every single vNSF as the Juju
case; in that case, it was needed an LXD container per
Proxy Charm; now it is required only an LXD container
hosting Ansible framework. 'e only additional operation
to be performed is in the upload process of a new vNSF
Descriptor (e.g., a new supported vNSF) and is the loading
of the new plug-in for the vNSF in the Ansible Container.
'e plug-ins we designed are a collection of playbooks
capable of performing every “Day-1 configuration” needed
by the vNSF.

'e Security Service Controller is in charge of calling the
proper configuration through Ansible; thus, we could
reconfigure the vNSFs during their life cycle leveraging this
mechanism. Ansible is also extensible for use with Docker
(available online at https://www.docker.com); therefore, this
solution is also suitable in the container case. As we will see
in the next section, we also addressed the problem of the
automatic traffic steering, leveraging another NFV MANO
platform rather than OSM. Even in that case, the two-step
configuration with cloud-init and Ansible is applicable
without substantial changes.

5. Service Function Chaining

Another challenging problem of the NFV Orchestration is
the steering of the traffic. Many of the best known NFV
platforms (e.g., Open Baton) address the problem of the
NFV Management and Orchestration without the use of
the Service Function Chaining or the VNF Forwarding
Graph. 'is means that the traffic between the vNSFs is
configured manually in every single vNSF or at least it
needs to be provided an external controller to manage the
traffic flows. Our goal is to configure the whole security
service starting only from the NSD; thus, the traffic
steering should be automatically configured between the
vNSFs as well. Another question about the traffic steering
is the support for SFC and VNFFGs given by the NFV

NFVI

Juju
Controller

Proxy
Charm

Proxy
Charm

Proxy
Charm
LXD

VCA

vFW

vDPI

vIDS

VCA
Ansible

vFW
plug-in

vDPI
plug-in

vIDS
plug-in

SSH

SSH(a)

(b)

Figure 3: VNF Managers: Juju vs. Ansible comparison.

Security and Communication Networks 7

https://www.docker.com

MANO. In order to classify the different traffic flows, an
NFV Orchestration framework needs to support this
feature and the libraries offered by the specific VIM
adopted. For instance, Open Source MANO gives an ex-
perimental support to VNFFGs only since the OSM release
FOUR, while other platforms like Tacker offer a more
stable support for this kind of technologies. In this section,
we will show how we could integrate Tacker in our
framework.

Leveraging the VNFFGs support given by Tacker, we
proposed an extension of our framework which allows to
define different paths for the traffic flows. As shown in
Figure 4, for example, we could replicate the scenario of the
user who needs a security service in order to access the
Internet. In this scenario, we have different types of users
(e.g., based on the type of access) and different types of
traffic as well (e.g., different transport or application
protocols). Based on this information, we can classify the
traffic flows and redirect the traffic itself only through the
needed vNSF instances. 'is approach could be a real
breakthrough in terms of flexibility in different scenarios,
in particular in which the network is divided based on the
type of traffic and the specific business case (e.g., the
network slicing in 5G).

OpenStack Tacker is an orchestration platform that fully
supports the VNFFGs and Service Function Chaining for a
specific VIM, in this case OpenStack. Tacker leverages the
OpenStack service Heat for the ResourceManagement of the
vNSFs, while it uses the OpenStack service networking-sfc to
support the VNFFG and instructs the virtual switches, which
are implemented inOpen vSwitch (OVS) technology, on how
they have to manage the traffic. Tacker also has two types of
descriptor as the OSM case: VNF Descriptor and NS De-
scriptor. In the last one, it is possible to define not only the
vNSFs which are required for the service, but also the FSPs
and the Classifiers for each path. Our idea is to start from the
high-level policies and give in their translation information
about the way we need to classify the traffic, in the form of
the final NSD.

At the end, in this descriptor, we have all the information
about the traffic steering, the different FSPs, and the Clas-
sifiers. 'e only change to be made in our framework is the
translation of the service graph to another NSD model. We
have also another advantage in using Tacker: the lower
requirements in terms of infrastructure resources. With
OSM, we need to install a complete NFV Orchestration
framework: the VNFM Juju, the monitoring services, the
Resource Orchestrator, and the Service Orchestrator. All
those services rely on the specular VIM services: OpenStack
Nova and Heat for the resource management, Ceilometer for
the monitoring and the metrics, and networking-sfc for the
Service Function Chaining. Using Tacker, instead, allows to
add one only service to the OpenStack VIM platform and to
rely on a complete NFV MANO framework. A reason for
supporting OSM could be his potential support for different
VIMs. 'e problem until now is that the best VIM platform
supported from OSM is OpenStack, and there are still some
services (e.g., networking-sfc) for which it gives an exper-
imental support.

6. Evaluation

We evaluated our framework in different scenarios, based on
the different technologies used. In particular, we have de-
fined two different scenarios:

(i) VM scenario: in this scenario, we explored the in-
stantiation time of the Network Security Service
depending on the number of the required vNSFs.
More specifically, we used virtual machines on KVM
as virtualisation technology and OpenStack as VIM.
For what concerns the configurations, we leveraged
both Day-0 and Day-1 configurations; the last one
was performed with Juju.

(ii) Container scenario: in this scenario, we still have
evaluated the time instantiation of the NSS, but using
Docker as virtualisation technology and vim-emu
(available online at https://osm.etsi.org/wikipub/
index.php/VIM emulator) as VIM. In particular,
in this scenario, Day-0 configuration was performed
with Dockerfile and no Day-1 configurations are
intended to be performed.

In these test scenarios, we used two physical machines,
one acting as Security Site (VIM and Compute Node) and
the other acting as a SSM (SSC, Policy Services, and OSM).
Both the machines had an Intel Core i7 (quad-core 2.6 GHz)
CPU, 16GB of RAM, 512GB of SSD storage, and Linux
Ubuntu server (16.04.3 LTS) as Operating System. In the first
scenario, we tested the first solution with OSM and Juju, but
we also discussed the possible result enhancement using the
Ansible solution. In the second scenario, we leveraged an
experimental VIM provided by OSM as described below.

6.1. VMScenario. In this scenario, we used virtual machines
and OpenStack as VIM. We evaluated the instantiation time
of the NSS depending on the number of vNSFs required. We
also performed the two types of configuration described
above. We need to point out that the Day-0 configuration

User
access

Internet

vFW vDPI vIDS vNSF

NFVSDN

HeatNetworking-sfc Neutron

Tacker (NFV MANO)

Fl
ow

 cl
as

sif
ie

r

Fl
ow

 cl
as

sif
ie

r

OVS

Figure 4: Service Function Chaining: a SECaaS use case.

8 Security and Communication Networks

https://osm.etsi.org/wikipub/index.php/VIM
https://osm.etsi.org/wikipub/index.php/VIM

with cloud-init is mandatory in our framework due to the
use of cloud images. For this reason, we show in Figure 5 the
trend of the instantiation time according to the number of
vNSFs used in the NSS itself. 'e dotted line indicates the
time for instantiation of the resources needed by the VMs
and the initialisation time of the cloud image. 'e dashed
line instead shows the configuration time due to the Day-0
configuration. 'e continuous line reports the total time
needed for the security service to be at disposal. As we can
understand from the graph, the configuration time in this
case is in the same range (1–10 s), as the cloud-init con-
figuration is performed in parallel within all the vNSFs. 'is
time, depending also on the specific requirements for the
vNSF, we use random vNSFs (vFW, vDPI, and vIDS) with
different requirements, but this finally does not depend on
the number of vNSFs instantiated. 'e time of initialisation
instead depends on the number of the vNSFs, and it is almost
linear as the number of vNSFs increases. In another scenario,
we also test the deployment of the same security services on
two different OpenStack VIMs, where the second one is an
exact clone of the first described with the same physical
resources.

We experimented a constant decrease in terms of time
needed to initialise the NSS, and it is shown in Figure 6.With
this first configuration (Day-0), we had a complete working
NSS without the possibility to reconfigure it during its life
cycle. If we want this feature, we need to rely on something
different as the Juju. We tested this scenario evaluating the
time needed to deploy and configure the virtual instances
(LXD containers) which have to run the Proxy Charm in
charge of the reconfiguration of the vNSFs. As shown in
Figure 7, we notice that the time needed in this case
(continuous line) to instantiate the security service signifi-
cantly diverges as the number of vNSFs increases. We also
evaluated the overhead introduced by Juju (dashed line) in
the instantiation time, comparing it with the previous case
(dotted line). 'e graph shows how Juju introduces a sig-
nificant delay and is not the best solution for the Day-1
configuration. We proposed as evolution Ansible which
needs no instantiation time for every single vNSF and gives
the same functionality as Juju in the reconfiguration of the
vNSFs. Using the framework evolution, we could save the
overhead time introduced by Juju and bring the whole in-
stantiation time to the one provided in the first results with
only Day-0 configuration.

6.2. Container Scenario. With respect to the Container
Scenario, we used an experimental feature of OSM, which
was created in order to obtain the Docker container or-
chestration within OSM. We deployed a set of containerized
vNSFs and evaluated the time needed for the instantiation
and the Day-0 configuration. In this case, we operated the
Dockerfile as Day-0 configuration and no tools in order to
perform the Day-1 configuration. As shown in Figure 8, we
had a significant increase in terms of performance in the
instantiation time. 'e dashed line represents the Docker
instantiation time while the continuous one represents the
instantiation time with the virtual machines technology. For

what concerns the Day-1 configuration, we could use two
approaches in the future concerning the container case: the
first approach is to restart the whole NSS due to the shorter
time to instantiate the container instead the VMs, and the

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

NSS conf
NSS init
NSS tot

VNSFs (no.)

Ti
m

e (
s)

1
11
21
31
41
51
61
71
81
91

101
111

Figure 5: NSS instantiation time: initialisation and Day-0
configuration.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Mono-VIM
Multi-VIM

VNSFs (no.)

Ti
m

e (
s)

1
11
21
31
41
51
61
71
81
91

101
111

Figure 6: NSS instantiation time: monosite vs. multisite.

1 2 3 4 5 6 7 8 9 10

Juju overhead
NSS time (init + Day-0)
NSS time (init + Day-0 + Day-1)

VNSFs (no.)

Ti
m

e (
s)

1
31
61
91

121
151
181
211
241
271
301
331
361
391

Figure 7: NSS instantiation time: initialisation, Day-0 configura-
tion, and Day-1 configuration.

Security and Communication Networks 9

second one is to use Ansible to reconfigure it with the same
technique of the VM case, but leveraging theDocker Deamon
API instead of the SSH connection to the instances. 'is
scenario is experimental and represents an interesting
evolution for the SECaaS paradigm on NFV technologies.
'e aim of this test is to show how promising could be a
future integration and NFV Orchestration with container
technologies.

7. Conclusions

In this paper, we have proposed a practical imple-
mentation of the SECaaS paradigm, leveraging NFV and
SDN technologies. 'e way we stated the main challenges
and proposed solution to them supplies an improvement
on the state of the art about what technologies are more
reliable and useful in order to implement this approach
by an ISP. Furthermore, the configuration of the vNSFs
and the Service Function Chaining are two critical points,
which are widely pointed out in ETSI’s standards, and
they require to be deeply investigated in the time to come.
Part of this work has been focused to address this
question. Another contribution is about the tests made
on the framework and on the infrastructure presented in
both a virtual machine and container case scenario. 'ese
tests show how the adoption, or at least the partial
adoption, of lightweight virtualisation could dramatically
improve the Network Security Service performances. In
conclusion, this paper outlines some of the future
challenges and evolution of this work, underlining the
need for new resource optimization techniques and a
further investigation about the container configuration
technologies.

Data Availability

No data were used to support this study.

Conflicts of Interest

'e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

'is work has been partly supported by the SHIELD project,
cofunded by the European Commission (H2020 grant
agreement no. 700199).

References

[1] IBM, “IBM X-force threat intelligence index 2018 notable
security events of 2017, and a look ahead,” 2018, https://www.
ibm.com/downloads/cas/MKJOL3DG.

[2] Kevin Townsend, “Verizon: 2019 data breach investigations
report,” Verizon, Tech. Rep., IETF Datatracker, 2019.

[3] L. Durante, L. Seno, F. Valenza, and A. Valenzano, “A model
for the analysis of security policies in service function chains,”
in Proceedings of the 2017 IEEE Conference on Network
Softwarization (NetSoft), pp. 1–6, Bologna, Italy, July 2017.

[4] C. Basile, D. Canavese, A. Lioy, C. Pitscheider, and F. Valenza,
“Inter-function anomaly analysis for correct SDN/NFV de-
ployment,” International Journal of Network Management,
vol. 26, no. 1, pp. 25–43, 2016.

[5] ETSI, “GR NFV 001—V1.2.1—network functions virtualisation
(NFV); use cases,” 2017, https://portal.etsi.org/TB/
ETSIDeliverableStatus.aspx.

[6] F. Valenza, C. Basile, D. Canavese, and A. Lioy, “Classification
and analysis of communication protection policy anomalies,”
IEEE/ACM Transactions on Networking, vol. 25, no. 5,
pp. 2601–2614, 2017.

[7] ETSI, “GS NFV-SEC 013—V3.1.1—network functions virtu-
alisation (NFV) release 3; security; security management and
monitoring specification,” 2017, https://portal.etsi.org/TB/
ETSIDeliverableStatus.aspx.

[8] ETSI, “GS NFV-SWA 001—V1.1.1—network functions vir-
tualisation (NFV); virtual network functions architecture,”
2014, http://portal.etsi.org/chaircor/ETSI_support.asp.

[9] D. Montero, M. Yannuzzi, A. Shaw et al., “Virtualized security
at the network edge: a user-centric approach,” IEEE Com-
munications Magazine, vol. 53, no. 4, pp. 176–186, 2015.

[10] G. Gardikis, K. Tzoulas, K. Tripolitis et al., “SHIELD: A novel
NFV-based cybersecurity framework,” in Proceedings of the
2017 IEEE Conference on Network Softwarization (NetSoft),
pp. 1–6, Bologna, Italy, July 2017.

[11] M. Pattaranantakul, R. He, A. Meddahi, and Z. Zhang,
“Secmano: towards network functions virtualization (nfv)
based security management and orchestration,” in Proceedings
of the 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 598–605,
Tianjin, China, August 2016.

[12] J. Halpern and C. Pignataro, “Service function chaining (sfc)
architecture,” in Internet Requests for Comments, RFC 7665,
IETF Datatracker, 2015.

[13] ETSI, “GS NFV-MAN 001—V1.1.1—network functions virtu-
alisation (NFV); management and orchestration,” 2014, http://
portal.etsi.org/chaircor/ETSI_support.asp.

[14] A. M. Medhat, G. A. Carella, M. Pauls, and T. Magedanz,
“Orchestrating scalable service function chains in a NFV
environment,” in Proceedings of the 2017 IEEE Conference on
Network Softwarization (NetSoft), pp. 1–5, Bologna, Italy, July
2017.

[15] M. Mechtri, C. Ghribi, O. Soualah, and D. Zeghlache, “NFV
orchestration framework addressing SFC challenges,” IEEE
Communications Magazine, vol. 55, no. 6, pp. 16–23, 2017.

[16] A. J. Gonzalez, G. Nencioni, A. Kamisinski, B. E. Helvik, and
P. E. Heegaard, “Dependability of the NFV orchestrator: state

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

NSS VM (init + Day-0)
NSS Docker (init + Day-0)

VNSFs (no.)

Ti
m

e (
s)

1
11
21
31
41
51
61
71
81
91

101
111

Figure 8: NSS instantiation time: virtual machines vs. containers.

10 Security and Communication Networks

https://www.ibm.com/downloads/cas/MKJOL3DG
https://www.ibm.com/downloads/cas/MKJOL3DG
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
http://portal.etsi.org/chaircor/ETSI_support.asp
http://portal.etsi.org/chaircor/ETSI_support.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

of the art and research challenges,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 4, pp. 3307–3329, 2018.

[17] C. Basile, F. Valenza, A. Lioy, D. R. Lopez, and A. P. Perales,
“Adding support for automatic enforcement of security
policies in NFV networks,” IEEE/ACM Transactions on
Networking, vol. 27, no. 2, pp. 1–14, 2019.

[18] A. Basile, C. Pitscheider, F. Risso, F. Valenza, and M. Vallini,
“Towards the dynamic provision of virtualized security ser-
vices,” in Cyber Security and Privacy Forum, pp. 65–76,
Springer, Berlin, Germany, 2015.

[19] F. Valenza, S. Spinoso, C. Basile, R. Sisto, and A. Lioy, “A
formal model of network policy analysis,” in Proceedings of the
2015 IEEE 1st International Forum on Research and Tech-
nologies for Society and Industry Leveraging a better tomorrow
(RTSI), pp. 516–522, Turin, Italy, September 2015.

Security and Communication Networks 11

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

