721 research outputs found

    CPT and Lorentz-invariance violation

    Full text link
    The largest gap in our understanding of nature at the fundamental level is perhaps a unified description of gravity and quantum theory. Although there are currently a variety of theoretical approaches to this question, experimental research in this field is inhibited by the expected Planck-scale suppression of quantum-gravity effects. However, the breakdown of spacetime symmetries has recently been identified as a promising signal in this context: a number of models for underlying physics can accommodate minuscule Lorentz and CPT violation, and such effects are amenable to ultrahigh-precision tests. This presentation will give an overview of the subject. Topics such as motivations, the SME test framework, mechanisms for relativity breakdown, and experimental tests will be reviewed. Emphasis is given to observations involving antimatter.Comment: 6 page

    Chemotherapy-mediated p53-dependent DNA damage response in clear cell renal cell carcinoma: role of the mTORC1/2 and hypoxia-inducible factor pathways.

    Get PDF
    The DNA-damaging agent camptothecin (CPT) and its analogs demonstrate clinical utility for the treatment of advanced solid tumors, and CPT-based nanopharmaceuticals are currently in clinical trials for advanced kidney cancer; however, little is known regarding the effects of CPT on hypoxia-inducible factor-2α (HIF-2α) accumulation and activity in clear cell renal cell carcinoma (ccRCC). Here we assessed the effects of CPT on the HIF/p53 pathway. CPT demonstrated striking inhibition of both HIF-1α and HIF-2α accumulation in von Hippel-Lindau (VHL)-defective ccRCC cells, but surprisingly failed to inhibit protein levels of HIF-2α-dependent target genes (VEGF, PAI-1, ET-1, cyclin D1). Instead, CPT induced DNA damage-dependent apoptosis that was augmented in the presence of pVHL. Further analysis revealed CPT regulated endothelin-1 (ET-1) in a p53-dependent manner: CPT increased ET-1 mRNA abundance in VHL-defective ccRCC cell lines that was significantly augmented in their VHL-expressing counterparts that displayed increased phosphorylation and accumulation of p53; p53 siRNA suppressed CPT-induced increase in ET-1 mRNA, as did an inhibitor of ataxia telangiectasia mutated (ATM) signaling, suggesting a role for ATM-dependent phosphorylation of p53 in the induction of ET-1. Finally, we demonstrate that p53 phosphorylation and accumulation is partially dependent on mTOR activity in ccRCC. Consistent with this result, pharmacological inhibition of mTORC1/2 kinase inhibited CPT-mediated ET-1 upregulation, and p53-dependent responses in ccRCC. Collectively, these data provide mechanistic insight into the action of CPT in ccRCC, identify ET-1 as a p53-regulated gene and demonstrate a requirement of mTOR for p53-mediated responses in this tumor type

    Cosmological Birefringence: an Astrophysical test of Fundamental Physics

    Full text link
    We review the methods used to test for the existence of cosmological birefringence, i.e. a rotation of the plane of linear polarization for electromagnetic radiation traveling over cosmological distances, which might arise in a number of important contexts involving the violation of fundamental physical principles. The main methods use: (1) the radio polarization of radio galaxies and quasars, (2) the ultraviolet polarization of radio galaxies, and (3) the cosmic microwave background polarization. We discuss the main results obtained so far, the advantages and disadvantages of each method, and future prospects.Comment: To appear in the Proceedings of the JENAM 2010 Symposium "From Varying Couplings to Fundamental Physics", held in Lisbon, 6-10 Sept. 201

    Effective Theory Approach to the Spontaneous Breakdown of Lorentz Invariance

    Get PDF
    We generalize the coset construction of Callan, Coleman, Wess and Zumino to theories in which the Lorentz group is spontaneously broken down to one of its subgroups. This allows us to write down the most general low-energy effective Lagrangian in which Lorentz invariance is non-linearly realized, and to explore the consequences of broken Lorentz symmetry without having to make any assumptions about the mechanism that triggers the breaking. We carry out the construction both in flat space, in which the Lorentz group is a global spacetime symmetry, and in a generally covariant theory, in which the Lorentz group can be treated as a local internal symmetry. As an illustration of this formalism, we construct the most general effective field theory in which the rotation group remains unbroken, and show that the latter is just the Einstein-aether theory.Comment: 45 pages, no figures

    Transmutation operators boundary value problems

    Get PDF
    Transmutation operators method is used to solve and study boundary value problems. In this paper several ways to obtain transformation operators are considered: the finite integral transforms, Neumann series, the Fourier transforms, and reflection techniques. The finite integral transform technique leads to solution in the form of a composition of the Fourier sine transform and inverse finite integral transfor

    Lorentz Violation in Warped Extra Dimensions

    Get PDF
    Higher dimensional theories which address some of the problematic issues of the Standard Model(SM) naturally involve some form of D=4+nD=4+n-dimensional Lorentz invariance violation (LIV). In such models the fundamental physics which leads to, e.g., field localization, orbifolding, the existence of brane terms and the compactification process all can introduce LIV in the higher dimensional theory while still preserving 4-d Lorentz invariance. In this paper, attempting to capture some of this physics, we extend our previous analysis of LIV in 5-d UED-type models to those with 5-d warped extra dimensions. To be specific, we employ the 5-d analog of the SM Extension of Kostelecky et. al. ~which incorporates a complete set of operators arising from spontaneous LIV. We show that while the response of the bulk scalar, fermion and gauge fields to the addition of LIV operators in warped models is qualitatively similar to what happens in the flat 5-d UED case, the gravity sector of these models reacts very differently than in flat space. Specifically, we show that LIV in this warped case leads to a non-zero bulk mass for the 5-d graviton and so the would-be zero mode, which we identify as the usual 4-d graviton, must necessarily become massive. The origin of this mass term is the simultaneous existence of the constant non-zero AdS5AdS_5 curvature and the loss of general co-ordinate invariance via LIV in the 5-d theory. Thus warped 5-d models with LIV in the gravity sector are not phenomenologically viable.Comment: 14 pages, 4 figs; discussion added, algebra repaire

    Constraining noncommutative field theories with holography

    Full text link
    An important window to quantum gravity phenomena in low energy noncommutative (NC) quantum field theories (QFTs) gets represented by a specific form of UV/IR mixing. Yet another important window to quantum gravity, a holography, manifests itself in effective QFTs as a distinct UV/IR connection. In matching these two principles, a useful relationship connecting the UV cutoff ΛUV\Lambda_{\rm UV}, the IR cutoff ΛIR\Lambda_{\rm IR} and the scale of noncommutativity ΛNC\Lambda_{\rm NC}, can be obtained. We show that an effective QFT endowed with both principles may not be capable to fit disparate experimental bounds simultaneously, like the muon g2g-2 and the masslessness of the photon. Also, the constraints from the muon g2g-2 preclude any possibility to observe the birefringence of the vacuum coming from objects at cosmological distances. On the other hand, in NC theories without the UV completion, where the perturbative aspect of the theory (obtained by truncating a power series in ΛNC2 \Lambda_{\rm NC}^{-2}) becomes important, a heuristic estimate of the region where the perturbative expansion is well-defined E/ΛNC1E/ \Lambda_{\rm NC} \lesssim 1, gets affected when holography is applied by providing the energy of the system EE a ΛNC\Lambda_{\rm NC}-dependent lower limit. This may affect models which try to infer the scale ΛNC\Lambda_{\rm NC} by using data from low-energy experiments.Comment: 4 pages, version to be published in JHE
    corecore