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Abstract Transmutation operators method is used to solve and study boundary
value problems. In this paper several ways to obtain transformation operators are
considered: the finite integral transforms, Neumann series, the Fourier transforms,
and reflection techniques. The finite integral transform technique leads to solution
in the form of a composition of the Fourier sine transform and inverse finite integral
transform. The Neumann series technique implies decomposition of the solution in
power series of the shift operator. The Fourier transform technique provides transi-
tion to the Fourier images and comparison with the model boundary value problem.
Reflection technique involves a consistent approach to the solution as a reflection
from the borders. In all cases, the solution of the boundary value problem is obtained
as an expansion in the solutions of the model boundary value problem. In some
cases, the sum of a series can be calculated in elementary functions. New formulas
have been found for solving the Dirichlet problem in a three-dimensional layer.
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1 Introduction

The aim of this article is to develop the theory of transmutation operators and
apply it to solving boundary value problems for the Laplace equation in domains
with plane symmetry. The classical transmutation operators are introduced by
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K. Weierstrass, S. D. Poisson N. Y. Sonin and are used in mathematical physics
[2–4, 6–8, 10, 14, 17, 18]. S.M. Sitnik [17] describes the general definition of the
transmutation operator, see Definition 1 in [15].

Definition 1 An operator J is called the transmutation operator if for operators A,B

the following condition holds

JA = BJ.

If the solution y = B−1x of the model problem By = x is known, then the solution
of the new problemAz = x can be found using the transmutation operator J by the
formula z = J−1B−1Jx. If we select

A = d2

dx2 , B = Bα = d2

dx2 + 2α + 1

x
,

Bα—the Bessel operator, then the transmutation operator J = P0 is the Poisson
operator [17]

P0 [f (x)] = 2

π

∫ 1

0

f (εx)√
1 − ε2

dε.

The transmutation operator has the form P0 = H−1Fc, here H is the Hankel
transform, and Fc is the Fourier cosine transform.

In the article, we clarify the concept of a transmutation operator in order to solve
boundary value problems for potential theory. For this, we consider two boundary
value problems for the Laplace equation

{
u′′

xx + u′′
yy = 0, 0 < x,−∞ < y < ∞;

�u (0, y) = g (y) ;

{
ũ′′

xx + ũ′′
yy = 0, 0 < x,−∞ < y < ∞;
�̃ũ (0, y) = g (y) .

Below in Definition 2 we define the transmutation operator associated with bound-
ary conditions. The transmutation operator establishes an isomorphism of these
boundary value problems.

Definition 2 Let two boundary operators �̃, � be given. An operator J is called the
transmutation operator if the following conditions hold:

(1) the transmutation operator J and operator d2

dx2 are permutable,

(2) �̃J = �.

In contrast to the general case [17], Definition 2 introduces special transmutation
operators that take into account boundary conditions.The introduced operators are
permutable with the Laplace operator, they transform the harmonic function into
a harmonic function and change the type of boundary conditions.For example, the
Dirichlet problem in a semi-plane is transformed into a boundary value problem
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with non-local boundary conditions. The transmutation operators introduced in the
article (see Definition 2) establish a functional connection between the different
boundary-value problems of the potential theory. Moreover, the properties of the
solution of a new boundary value problem are determined by the properties of the
solution of the model boundary value problem. The transmutation operator allows
us to obtain the solution of a boundary value problem in the form of Neumann series,
more convenient when implemented on a computer.The members of the Neumann
series are powers of the shift operator, therefore, the calculations are cyclical.In
addition, the usage of transmutation operators allows us to clarify the structure of
potential field and present it as a sum of field reflections from domain boundary.
Further, in Sect. 2 we present four ways to construct the transmutation operators:
The finite integral transforms technique, Reflection method, the Fourier trans-
form technique, Neumann series technique. The main results and conclusions are
formulated in Sects. 3 and 4.

2 Materials and Methods

2.1 The Finite Integral Transforms Technique

The transmutation operators technique is based on the study of a pair of Sturm-
Liouville problems. The transmutation operator establishes an isomorphism of the
singular and regular Sturm-Liouville problems [5, 13]. For the most important cases
in applications, an explicit expression for the transmutation operators is found.

2.1.1 Sturm–Liouville Problem with Dirichlet Boundary Conditions

Let’s consider the Sturm–Liouville problem on finding nontrivial solutions on the
interval (0, π)

{
y ′′ + λ2y = 0,

y (0) = 0, y (π) = 0.

The eigenvalues have the form λk = k, k = 1, 2, 3, . . ., and the corresponding
eigenfunctions are yk (x) = sin kx, k = 1, 2, 3, . . . Let the function y = f (x) be
defined on the segment [0, π] and f̂ (k) be its the Fourier integral transform

f̂ (k) =
∫ π

0
sin kxf (x) dx. (1)

Then the functiony = f (x) can be represented

f (x) = 2

π

∞∑
k=1

f̂ (k) sin kx. (2)
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For the function y = F (x) on the interval [0,∞) we consider the Fourier sin
transforms on the real semi-axis, direct:

F̂ (λ) =
∫ ∞

0
sin λxF (x) dx,

inverse:

F (x) = 2

π

∫ ∞

0
sin λxF̂ (λ) dλ.

Let the function y = f (x) on the interval [0, π] corresponds to the function F̂ (λ)

by formula (2):

f (x) = 2

π

∞∑
k=1

F̂ (k) sin kx, x ∈ [0, π] .

The mapping J : F → f is a transmutation operator

J [F ] (x) ≡ f (x) = 2

π

∞∑
k=1

F̂ (k) sin kx.

Let the function F (x) be sufficiently smooth and decreases sufficiently rapidly
at infinity so that all arising integrals and series converge. We will transform the
function F̂ (k):

F̂ (k) =
∫ ∞

0
sin kxF (x) dx =

= ∑∞
j=0

(∫ 2πj+π

2πj sin kxF (x) dx + ∫ 2πj+2π

2πj+π sin kxF (x) dx
)

=
= ∑∞

j=0

∫ π

0 sin kxF (x + 2πj) dx + ∫ 2π

π
sin kxF (x + 2πj) dx =

= ∑∞
j=0

∫ π

0 sin kxF (x + 2πj) dx − ∫ π

0 sin kxF (2π − x + 2πj) dx =
= ∑∞

j=0

∫ π

0 sin kx (F (x + 2πj) − F (2π − x + 2πj)) dx =
= ∫ π

0 sin kx
∑∞

j=0 (F (x + 2πj) − F (2π − x + 2πj)) dx.

We find the original y = f (x) by formula (2). The transmutation operator J has
the form:

J [F ] (x) = f (x) = 2
π

∑∞
k=1 F̂ (k) sin kx =

= ∑∞
j=0 (F (x + 2πj) − F (2π − x + 2πj)) .

(3)
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To apply the transmutation operator (3), we consider the Dirichlet problem for the
strip

{
u′′

xx + u′′
yy = 0, 0 < x < π,−∞ < y < ∞;

u (0, y) = g (y) , u (π, y) = 0,
(4)

and the Dirichlet problem for the semi-plane

{
ũ′′

xx + ũ′′
yy = 0, 0 < x,−∞ < y < ∞;

ũ (0, y) = g (y) .
(5)

Using the transmutation operator (3), we establish relation of problems (4) and (5)

u (x, y) = J
[
ũ (x, y)

] =
∞∑

j=0

(ũ (x + 2πj, y) − ũ (2π − x + 2πj, y)) . (6)

Based on Poisson’s formula for a semi-plane

ũ (x, y) = 1

π

∫ ∞

−∞
x

x2 + (y − η)2 g (η) dη,

and on identity from [12], we get

∞∑
j=0

(
x + 2πj

(x + 2πj)2 + (y − η)2
− 2π − x + 2πj

(2π − x + 2πj)2 + (y − η)2

)
= 1

2

sin x

ch (y − η) − cos x
.

(7)

Formula (7) is established for solving the Dirichlet problem in the strip [13]

u (x, y) = 1

2π

∫ ∞

−∞
sin x

ch (y − η) − cos x
g (η) dη.

2.1.2 Sturm–Liouville Problem with Neumann Boundary Conditions

Sturm–Liouville problem with Neumann boundary conditions is to find non-trivial
solutions on the interval (0, π)

{
y ′′ + λ2y = 0,

y ′ (0) = 0, y ′ (π) = 0.
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The eigenvalues have the form λk = k, k = 0, 1, 2, 3, . . ., and the corresponding
eigenfunctions are yk (x) = cos kx, k = 0, 1, 2, 3, . . . Let a function y = f (x) be
given on a segment [0, π] and f̂ (k) be its the finite Fourier transform

f̂ (k) =
∫ π

0
cos kxf (x) dx. (8)

Then the conversion formula has the form:

f (x) = 2

π

∞∑
k=0

f̂ (k) cos kx. (9)

Let the function F (x) be defined on the real semi-axis, and F̂ (λ) be its Fourier
cosine transform:

F̂ (λ) =
∫ ∞

0
cos λxF (x) dx.

As a result, we get the transmutation operator J : F → f :

J [F ] (x) ≡ f (x) = 2

π

∞∑
k=0

F̂ (k) cos kx, x ∈ [0, π] . (10)

Simplify the function F̂ (k)

F̂ (k) = ∫ ∞
0 sin kxF (x) dx =

= ∫ π

0 cos kx
∑∞

j=0 (F (x + 2πj) + F (2π − x + 2πj)) dx,

and back to (10):

J [F ] (x) = f (x) = 2
π

∑∞
k=0 F̂ (k) cos kx =

= ∑∞
j=0 (F (x + 2πj) + F (2π − x + 2πj)) .

(11)

Formula (11) defines the required transmutation operator. We will apply it to the
Neumann problem in the strip

{
u′′

xx + u′′
yy = 0, 0 < x < π,−∞ < y < ∞;

u′ (0, y) = g (y) , u′ (π, y) = 0,
(12)

Let a function U (x, y) be the solution of Neumann problem for a semi-plane

{
U ′′

xx + U ′′
yy = 0, 0 < x,−∞ < y < ∞;

U ′ (0, y) = g (y) .
(13)
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By using (11), we obtain a new formula for solving problem (12):

u (x, y) = J [U (x, y)] =
∞∑

j=0

(U (x + 2πj, y) − U (2π − x + 2πj, y)) . (14)

By integrating identity (7), we get

∞∑
j=0

(
1

2
ln

(x + 2πj)2 + (y − η)2

(2πj)2
+ 1

2
ln

(2π − x + 2πj)2 + (y − η)2

(2π + 2πj)2

)
=

= 1

2
ln (ch (y − η) − cos x) .

As a result, we obtain a solution to the Neumann problem in the strip:

u (x, y) = 1

2π

∫ ∞

−∞
ln (ch (y − η) − cos x) g (η) dη.

2.1.3 Sturm–Liouville Mixed Boundary Value Problem

The Sturm–Liouville problem about finding non-trivial solutions on the interval
[0, π]

{
y ′′ + λ2y = 0,

y (0) = 0, y ′ (π) = 0.

has eigenvalues λk = k, k = 1, 2, 3, . . . and corresponding eigenfunctions

yk (x) = sin

((
k − 1

2

)
x

)
, k = 1, 2, 3, . . .

Let the function y = f (x) be given on segment [0, π] and f̂ (k) be its finite Fourier
transform on segment [0, π]

f̂ (k) =
∫ π

0
sin

(
k − 1

2

)
xf (x) dx,

then

f (x) = 2

π

∞∑
k=1

f̂ (k) sin

(
k − 1

2

)
x.
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Let the function y = F (x) be given on the interval [0,∞) and F̂ (λ) be its Fourier
sine transform

F̂ (λ) =
∫ ∞

0
sin λxF (x) dx,

then

F (x) = 2

π

∫ ∞

0
sin λxF̂ (λ) dλ.

The function y = f (x) on the interval [0, π] corresponds to the function F (x) by
the rule:

f (x) = J [F ] (x) = 2

π

∞∑
k=1

F̂ (k) sin

(
k − 1

2

)
x (15)

The transmutation operator J is given by formula (15). Formula (15) can be
simplified:

J [F (x)] = f (x) =
∞∑

j=0

(−1)j (F (x + 2πj) + F (2π − x + 2πj)) . (16)

We will apply the constructed transmutation operator (16) for the mixed boundary
value problem in the strip

{
u′′

xx + u′′
yy = 0, 0 < x < π,−∞ < y < ∞;

u (0, y) = g (y) , u′ (π, y) = 0,
(17)

and Dirichlet problem for the semi-plane (5). By using (16), we obtain a new
formula for solving problem (17)

u (x, y) = J
[
ũ (x, y)

] =
∞∑

j=0

(−1)j (ũ (x + 2πj, y) + ũ (2π − x + 2πj, y)) .

(18)

Based on the identity of [12]

∞∑
j=0

(−1)j
(

x + 2πj

(x + 2πj)2 + (y − η)2 + 2π − x + 2πj

(2π − x + 2πj)2 + (y − η)2

)
= sin x

2 ch
y−η

2

ch (y − η) − cos x
,

we get a new formula for solving a mixed boundaries [15] value problem in the strip
[12]

u (x, y) = 1

π

∫ ∞

−∞
sin x

2 ch
y−η

2

ch (y − η) − cos x
g (η) dη.
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2.1.4 Sturm–Liouville Problem with Dirichlet Boundary Conditions
on Composite Real Semi-Axis

Let’s consider the Sturm–Liouville singular problem about finding nontrivial solu-
tions on composite real semi-axis E1+ = (0, l) ∪ (l,∞) ,

λ2yj + a2
j y

′′
jxx = 0, x ∈ E1+, j = 1, 2; (19)

with boundary conditions

y1 (0) = 0, |y2 (x)| < ∞ (20)

and inner boundary conditions

y1 (l) = y2 (l) , λ1y
′
1 (l) = λ2y

′
2 (l) . (21)

The eigenvalues of problem (19)–(21) are the interval (0,∞), and eigenfunctions
are, [16]

y1 (x, λ) = Jm

[(
e
iλ x

a1 − k − 1

k + 1
e
iλ 2l−x

a1

) (
1 − k − 1

k + 1
e
iλ 2l

a1

)−1
]

, 0 < x < l,

y2 (x, λ) = 2

k + 1
Jm

[
e
iλ x−l

a2 e
iλ l

a1

(
1 − k − 1

k + 1
e
iλ 2l

a1

)−1
]

, l < x, k = λ2

λ1

a1

a2
.

Formulas can be represented as

y1 (x, λ) =
∞∑

j=0

(
k − 1

k + 1

)j (
sin

(
x + 2lj

a1

)
− k − 1

k + 1
sin

(
2l − x + 2lj

a1

))
, 0 < x < l,

y2 (x, λ) = 2

k + 1

∞∑
j=0

(
k − 1

k + 1

)j

sin

(
x − l

a2
+ l + 2lj

a1

)
, l < x. (22)

The decomposition theorem on eigenfunctions is valid

f1 (x) = 2

π

∫ ∞

0
y1 (x, λ) F (λ) dλ, 0 < x < l;

f2 (x) = 2

π

∫ ∞

0
y2 (x, λ) F (λ) dλ, l < x. (23)
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where F (λ) is the spectral function. Let the function y = f̃ (x) be define on the
real semi-axis, and the functionF (λ) be its Fourier sine transform

F (λ) =
∫ ∞

0
sin (λξ) f̃ (ξ) dξ.

The transmutation operator J is defined by formulas (23), i.e. J : f̃ → f,

f (x) = f1 (x) (θ (l − x) · θ (x)) + f2 (x) θ (x − l) .

We obtain transformation operator from (22):

f1 (x) =
∞∑

j=0

(
k − 1

k + 1

)j (
f̃

(
x + 2lj

a1

)
− k − 1

k + 1
f̃

(
2l − x + 2lj

a1

))
, 0 < x < l;

f2 (x) = 2

k + 1

∞∑
j=0

(
k − 1

k + 1

)j

f̃

(
x − l

a2
+ l + 2lj

a1

)
, l < x; (24)

2.2 Reflection Method

In this section a transmutation operator is constructed as infinite sum of reflections
from the domain boundaries. As a result, the solution of the basic boundary value
problem is obtained on the base of the model boundary value problem.

2.2.1 Non-local Boundary Value Problem on the Strip

Let the function ũ (x, y) be a solution of the Dirichlet model problem (5) and let the
function u (x, y) be a solution of boundary value problem with non-local boundary
conditions for the Laplace equation in the strip

⎧⎨
⎩

u′′
xx + u′′

yy = 0,

u (0, y) = f (y) ,

u′ (0, y) = −u′ (l, y) .

(25)

We will apply the method of successive reflections from the boundaries x = 0 and
x = l. As a zero-order approximation, we choose the solution of model problem
(5), i.e. u0 (x, y) = ũ (x, y). We will look for the first-order approximation in the
form

u1 (x, y) = ũ (x, y) + v0 (x, y) ,
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here v0 (x, y) is a harmonic function in the right semi-plane

ũ′ (0, y) − ũ′ (l, y) = −v
′
0 (0, y) + v

′
0 (l, y) .

Then v0 (x, y) = ũ (l − x, y). So, the first-order approximation is

u1 (x, y) = ũ (x, y) + ũ (l − x, y) .

Repeating the algorithm we find the second-order approximation u2 (x, y) and a
sequence of approximations

u2 (x, y) = ũ (x, y) + ũ (l − x, y) − ũ (l + x, y) .

u3 (x, y) = ũ (x, y) + ũ (l − x, y) − ũ (l + x, y) + ũ (2l + x, y) .

u4 (x, y) = ũ (x, y) + ũ (l − x, y) − ũ (l + x, y) + ũ (2l + x, y) − ũ (2l − x, y) .

. . .

u2n (x, y) = u2n−2 (x, y) + (−1)n (ũ (x + nl, y) − ũ (−x + nl, y)) .

u2n−1 (x, y) = u2n−2 (x, y) + (−1)n ũ (x + nl, y) .

As a limit we obtain the exact solution to problem (25)

u (x, y) = ũ (x, y) +
∞∑

j=1

(−1)j (ũ (x + lj, y) − ũ (−x + lj, y)) .

2.2.2 Boundary Value Problem with Inner Boundary Conditions
in a Strip

Let’s consider the Dirichlet problem for the Laplace equation in the strip:

S1 = {(x, y) : x ∈ (0, l) ∪ (l, L) , y ∈ (−∞,∞)}

u′′
1xx + u′′

1yy = 0, 0 < x < l,−∞ < y < ∞,

u′′
2xx + u′′

2yy = 0, l < x < L,−∞ < y < ∞

with boundary conditions

y1 (0) = 0, |y2 (x)| < ∞

u1 (0, y) = f (y) ,−∞ < y < ∞;
u2 (L, y) = 0,−∞ < y < ∞ (26)
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and inner boundary conditions on the straight line x = l

u1 (l, y) = u2 (l, y) ,−∞ < y < ∞;
λ1u

′
1 (l, y) = λ2u

′
2 (l, y) ,−∞ < y < ∞.

The solution to problem (26) will be found by the reflection method. The zero-order
approximation will be the solution of the model problem (4), i.e.

u0
1 (x, y) = ũ0 (x, y) , 0 < x < l, u0

2 (x, y) = ũ0 (x, y) , l < x < L.

First- order approximation has the form

u1
1 (x, y) = ũ0 (x, y) + 1−k

1+k
ũ0 (2l − x, y) , 0 < x < l;

u1
2 (x, y) = 2

1+k
ũ0 (x, y) , l < x < L, k = λ2

λ1
.

Let the function ũ1 (x, y) be a solution of the model problem (4) with the boundary
condition ũ1 (0, y) = ũ0 (2l, y), then the second-order approximation will be

u1
1 (x, y) = u0

1 (x, y) + k−1
k+1

(
ũ1 (x, y) − k−1

k+1 ũ1 (2l − x, y)
)

, 0 < x < l;
u1

2 (x, y) = u0
2 (x, y) + 2

k+1 ũ1 (x, y) , l < x < L.

If un
1 (x, y) , un

2 (x, y) are an approximations of order n, then the (n + 1)—order
approximations are

un+1
1 (x, y) = un

1 (x, y) + k−1
k+1

(
ũn+1 (x, y) − k−1

k+1 ũn+1 (2l − x, y)

)
, 0 < x < l;

un+1
2 (x, y) = un

2 (x, y) + 2
k+1 ũn+1 (x, y) , l < x < L,

where un+1 (x, y) is the solution of model problem (4) with the boundary condition

ũn+1 (0, y) = ũn (2l, y) .

If n → ∞ we get

u1 (x, y) =
∞∑

j=0

(
k − 1

k + 1

)j (
ũj (x, y) − k − 1

k + 1
ũj (x, y)

)
, 0 < x < l; (27)

u2 (x, y) = 2

k + 1

∞∑
j=0

(
k − 1

k + 1

)j

ũj (x, y) , l < x. (28)
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2.3 The Fourier Transform Technique

Let the function u (x, y) be a solution of Laplace equation with periodicity boundary
conditions in the strip

S = {(x, y) : x ∈ (0, l) , y ∈ (−∞,∞)}
⎧⎨
⎩

u′′
xx + u′′

yy = 0,

u (0, y) − u (l, y) = f (y) ,

u′ (0, y) − u′ (l, y) = 0.

(29)

And let F (λ) be the Fourier transform of function f (y), i.e.

F (λ) =
∫ ∞

−∞
e−iληf (η) dη,

then the solution to problem (27) takes form

u (x, y) = 1

4π

∫ ∞

−∞
e−|λ|x − e−|λ|(l−x)

1 − e−|λ|l eiλyF (λ) dλ.

Expand the kernel in a series of powers e−|λ|l

e−|λ|x − e−|λ|(l−x)

1 − e−|λ|l =
∞∑

k=0

(
e−|λ|(x+lj) − e−|λ|(l−x+lj)

)
.

Then we get

u (x, y) = 1

2

∞∑
k=0

1

2π

∫ ∞

−∞

(
e−|λ|(x+lj)eiλyF (λ) dλ − e−|λ|(l−x+lj)eiλyF (λ) dλ

)
.

The Inverse Fourier transform gives:

u (x, y) = 1

2

∞∑
j=0

(ũ (x + lj ) − ũ (l − x + lj )) .

Taking into account the formulae from [12]

1

π

∞∑
j=0

(
x + lj

(x + lj )2 + y2
− l − x + lj

(l − x + lj )2 + y2

)
= 1

l

sin 2πx
l

ch
2πy

l
− cos 2πx

l

.
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we get a solution to the problem with boundary conditions of periodicity

u (x, y) = 1

2l

∫ ∞

−∞
sin 2πx

l

ch
2π(η−y)

l
− cos 2πx

l

f (η) dη.

2.4 Neumann Series Technique

In the section the transmutation operator is searched as the Neumann series sum [9]
of shift or generalized shift operators.

2.4.1 Solution of the Laplace Equation with Non-local Boundary
Conditions in the Strip

Let the function u (x, y) be a solution of the Laplace equation with non-local
boundary conditions in the strip S = {(x, y) : x ∈ (0, l) , y ∈ (−∞,∞)}

{
u (0, y) = f (y) ,−∞ < y < ∞;

u′ (0, y) = u′ (l, y) ,−∞ < y < ∞.
(30)

The solution to problem (30) will be sought in the form

u (x, y) = A1ũ (x, y) + A2ũ (l − x, y) ,

where A1, A2 are unknown operators, ũ is the solution of the model problem (5).
We get the system of equations for operators A1, A2

{
A1 + A2 = 0,

A1 + A2Tl = I ,

here Tl is the shift operator Tl : u (x, y) → u (x + l, y) and I is an identity operator.
The solution to the system of operator equations is

A1 = (I − Tl)
−1 , A2 = − (I − Tl)

−1 .

By using Neumann series

(I − Tl)
−1 =

∞∑
j=0

T
j
l ,
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we get

u (x, y) =
∞∑

j=0

(ũ (x + lj, y) − ũ (l − x + lj, y)) , 0 < x < l,−∞ < y < ∞.

(31)

Based on formula (31), we obtain the solution of the non-local problem (30)

u (x, y) = 1

l

∫ ∞

−∞
sin 2πx

l

ch
2π(η−y)

l
− cos 2πx

l

f (η) dη. (32)

Formula (32) is obtained for the first time.

2.4.2 Solution of the Laplace Equation with Generalized Non-local
Boundary Conditions in a Strip

Let the function u (x, y) be a solution of the Laplace equation in a strip S =
{(x, y) : x ∈ (0, l) , y ∈ (−∞,∞)} with non-local boundary conditions

{
u (0, y) = f (y) ,

ku′ (0, y) = u′ (l, y) ,−1 ≤ k ≤ 1.
(33)

We will seek a solution to the problem in the form

u (x, y) = A1ũ (x, y) + A2ũ (l − x, y) .

From the boundary conditions (33) we have a system of equations

{
kA1 − kA2Tl − A1Tl + A2 = 0,

A1 + A2Tl = I.

The formal solution to the system of equations has the form

A1 = (I − kTl)
(
I − 2kTl + T 2

l

)−1
,

A2 = (Tl − kI)
(
I − 2kTl + T 2

l

)−1
.

We apply formulas for the generating functions of Chebyshev polynomials [11] of
first and second kind

∑∞
n=0 Tn(k)tn = 1−tk

1−2tk+t2 ;∑∞
n=0 Un(k)tn = 1

1−2tk+t2 .
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As a result, we get for operators A1, A2 [11]

A1 = (I − kTl)
(
I − 2kTl + T 2

l

)−1 = ∑∞
j=0 Tj (k) T

j
l ,

A2 = (Tl − kI)
(
I − 2kTl + T 2

l

)−1 = ∑∞
j=0

[
− 1

k
Tj (k) + 1−k2

k
Uj (k)

]
T

j
l .

Thus, we have

u (x, y) =
∞∑

j=0

Tj (k) ũ (x + lj, y)+
∞∑

j=0

[
−1

k
Tj (k) + 1 − k2

k
Uj (k)

]
ũ (l − x + lj, y) .

Using the recurrent relation [11], we obtain

Tj+2(k) = kTj+1(k) − (1 − k2)Uj (k),

then

−1

k
Tj (k) + 1 − k2

k
Uj (k) = −1

k
Tj (k) + Tj+1 (k) − 1

k
Tj+2 (k) .

The recurrent relation for Chebyshev polynomials of the first kind has the form

Tj+2(k) = 2kTj+1(k) − Tj (k),

then

−1

k
Tj (k) + 1 − k2

k
Uj (k) = −Tj+1 (k) .

As a result, we have the solution to the boundary value problem

u (x, y) = ũ (x, y) +
∞∑

j=1

Tj (k) (ũ (x + lj, y) − ũ (−x + lj, y)) .

3 Results

All proposed and developed methods from Sect. 2 are successfully applied to
solving boundary value problems with non-classical boundary conditions. The
proposed techniques allow us to find a formula, see (38), for solving the Dirichlet
problem with inner boundary conditions for the semi-plane. We illustrate the proof
of formula (38) by using the Neumann series expansion method. Formula (38) is
a new result for the theory of potentials. To solve the Dirichlet problem with inner
boundary conditions for the strip, the reflection method is most effective, the new
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result is represented in (39). Using the finite Fourier transforms method, a new
result is obtained for the three-dimensional Dirichlet problem in a flat layer, see
formula (41). We will apply the Neumann expansion method in solving problem of
the Laplace equation in semi-plane E1+ = { (x, y) : y ∈ R, x ∈ (0, l) ∪ (l,∞) }

u′′
jyy + a2

j u
′′
jxx = 0, (x, y) ∈ E1+, j = 1, 2; (34)

with boundary condition

u1 (0, y) = f (y) (35)

and inner boundary conditions

u1 (l, y) = u2 (l, y) , λ1u
′
1x (l, y) = λ2u

′
2x (l, y) . (36)

We will seek a solution to problem (34)–(36) in the form

u1 (x, y) = c1ũ

(
x

a1
, y

)
+ c2ũ

(
2l − x

a1
, y

)
, 0 < x < l;

u2 (x, y) = c3ũ

(
x − l

a2
+ l

a1
, y

)
, l < x.

From (34)–(36) we get the system of equations

⎧⎨
⎩

c1 + c2T = I,

c1 + c2 = c3,

c1 − c2 = kc3,

(37)

where k = λ2
λ1

a1
a2

and T is the shift operator T
[
ũ (x, y)

] = ũ
(
x + 2l

a1

)
. The solution

of the system of equations (37) is obtained as an expansion in a series of Neumann
operators in powers of the operator k−1

k+1 · T

c1 =
∞∑

j=0

(
k − 1

k + 1

)j

T j , c2 = −k − 1

k + 1

∞∑
j=0

(
k − 1

k + 1

)j

T j , c3 = 2

k + 1

∞∑
j=0

(
k − 1

k + 1

)j

T j ,

where T j is the power of operator T i.e.

T j
[
ũ (x, y)

] = ũ

(
x + 2lj

a1

)
, j = 0, 1, 2, . . .
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As a result, we obtain the formulas for solution to problem (34)–(36)

u1 (x, y) =
∞∑

j=0

(
k − 1

k + 1

)j (
ũ

(
x + 2lj

a1
, y

)
− k − 1

k + 1
ũ

(
2l − x + 2lj

a1
, y

))
, 0 < x < l;

u2 (x, y) = 2

k + 1

∞∑
j=0

(
k − 1

k + 1

)j

ũ

(
x − l

a2
+ l + 2lj

a1
, y

)
, l < x. (38)

The finite integral transforms method leads to formula (38) also. The reflection
method is effective in the Dirichlet problem for the Laplace equation in the strip

S1 = {(x, y) : x ∈ (0, l) ∪ (l, L) , y ∈ (−∞,∞)} .

Let ũ (x, y)be the solution of the model problem (4). The generalized shift operator
T is defined by the rule T ũ (0, y) = ũ (2l, y), then formulas (27)–(28) take the form

u1 (x, y) =
∞∑

j=0

(
k − 1

k + 1

)j (
T j ũ (x, y) − k − 1

k + 1
T j ũ (2l − x, y)

)
, 0 < x < l;

u2 (x, y) = 2

k + 1

∞∑
j=0

(
k − 1

k + 1

)j

T j ũ (x, y) , l < x. (39)

The Fourier transform method and the Neumann series method are less effective,
since solution of problem (34)–(36) is obtained in the form of multiple series and
obtained formulas are difficult to apply in practice. The transmutation operators
method has shown its effectiveness in solving model boundary value problems.
Boundary value problems for the Laplace equation in the semi-plane and in the strip
with inner boundary conditions can be investigated by the transmutation operators
method. The method effectively works in the three-dimensional case. For example,
consider the Dirichlet problem for the three-dimensional Laplace equation in the
layer 0 < x < π,−∞ < y1, y2 < ∞

{
u′′

xx + u′′
y1y1

+ u′′
y2y2

= 0, 0 < x < π,−∞ < y1, y2 < ∞;
u (0, y1, y2) = g (y1, y2) , u (π, y1, y2) = 0,

(40)

We apply The finite Fourier integral transforms technique from Sect. 2.1 and we
have

u (x, y1, y2) =
∞∑

j=0

(ũ (x + 2πj, y1, y2) − ũ (2π − x + 2πj, y1, y2)) ,
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there

ũ (x, y1, y2) = 1

2π2

∫ 2π

0

xg (η1, η2)(
x2 + (y1 − η1)

2 + (y2 − η2)
2) 3

2

dη1dη2.

To transform the formula for u (x, y1, y2) we use the integral

∫ 2π

0

dt

x + iy sin t
= 2π√

x2 + y2
, x > 0,

it is obtained by the residue method, [1]. Find the derivative for the real part of the
integral with respect to x, we get

− 1

2π

d

dx

[∫ 2π

0

xdt

x2 + y2 sin2 t

]
= x(

x2 + y2
) 3

2

, x > 0.

From (7) we obtain the solution of the Dirichlet problem (40)

u (x, y) = 1

4π2

∫ ∞

−∞

∫ 2π

0

1 − cos xch (sin t |y − η|)
(ch (sin t |y − η|) − cos x)2 dtg (η1, η2) dη1dη2,

(41)

where |y − η|2 = |y1 − η1|2 + |y2 − η2|2.

4 Conclusions

The universality of transmutation operators method gives the possibility of its
application for any dimension problems with non-local boundary conditions. The
method advantage is the easily implementation form on a computer due to the
cyclical nature of the corresponding algorithm. Further, the transmutation operators
method can be developed for boundary value problems with axial and central
symmetry. The method can also be useful in the theory of integral transforms with
discontinuous trigonometric kernels and for calculating integrals, summing series.
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