64 research outputs found

    Microscopic calculation of the spin-dependent neutron scattering lengths on 3He

    Full text link
    We report on the spin.dependent neutron scattering length on 3He from a microscopic calculation of p-3H, n-3He, and d-2H scattering employing the Argonne v18 nucleon-nucleon potential with and without additional three-nucleon force. The results and that of a comprehensive R-matrix analysis are compared to a recent measurement. The overall agreement for the scattering lengths is quite good. The imaginary parts of the scattering lengths are very sensitive to the inclusion of three-nucleon forces, whereas the real parts are almost insensitive.Comment: 9 pages, 1 figur

    Asymptotic Freedom for Non-Relativistic Confinement

    Get PDF
    Some aspects of asymptotic freedom are discussed in the context of a simple two-particle non-relativisitic confining potential model. In this model asymptotic freedom follows from the similarity of the free-particle and bound state radial wave functions at small distances and for the same angular momentum and the same large energy. This similarity, which can be understood using simple quantum mechanical arguments, can be used to show that the exact response function approaches that obtained when final state interactions are ignored. A method of calculating corrections to this limit is given and explicit examples are given for the case of the harmonic oscillator.Comment: 16 pages, 5 figures, RevTex

    Final state effects on superfluid 4^{\bf 4}He in the deep inelastic regime

    Get PDF
    A study of Final State Effects (FSE) on the dynamic structure function of superfluid 4^4He in the Gersch--Rodriguez formalism is presented. The main ingredients needed in the calculation are the momentum distribution and the semidiagonal two--body density matrix. The influence of these ground state quantities on the FSE is analyzed. A variational form of ρ2\rho_2 is used, even though simpler forms turn out to give accurate results if properly chosen. Comparison to the experimental response at high momentum transfer is performed. The predicted response is quite sensitive to slight variations on the value of the condensate fraction, the best agreement with experiment being obtained with n0=0.082n_0=0.082. Sum rules of the FSE broadening function are also derived and commented. Finally, it is shown that Gersch--Rodriguez theory produces results as accurate as those coming from other more recent FSE theories.Comment: 20 pages, RevTex 3.0, 11 figures available upon request, to be appear in Phys. Rev.

    An experimental study to discriminate between the validity of diffraction theories for off-Bragg replay

    Full text link
    We show that experiments clearly verify the assumptions made by the first-order two-wave coupling theory for one dimensional lossless unslanted planar volume holographic gratings using the beta-value method rather than Kogelnik's K-vector closure method. Apart from the fact that the diffraction process is elastic, a much more striking difference between the theories becomes apparent particularly in the direction of the diffracted beam in off-Bragg replay. We therefore monitored the direction of the diffracted beam as a function of the off-Bragg replay angle in two distinct cases: [a] the diffracted beam lies in the plane of incidence and [b] the sample surface normal, the grating vector and the incoming beam do not form a plane which calls for the vectorial theory and results in conical scattering.Comment: Corrected Eqs. (3) & (6); 14 pages, 8 figure

    Neutron scattering and molecular correlations in a supercooled liquid

    Full text link
    We show that the intermediate scattering function Sn(q,t)S_n(q,t) for neutron scattering (ns) can be expanded naturely with respect to a set of molecular correlation functions that give a complete description of the translational and orientational two-point correlations in the liquid. The general properties of this expansion are discussed with special focus on the qq-dependence and hints for a (partial) determination of the molecular correlation functions from neutron scattering results are given. The resulting representation of the static structure factor Sn(q)S_n(q) is studied in detail for a model system using data from a molecular dynamics simulation of a supercooled liquid of rigid diatomic molecules. The comparison between the exact result for Sn(q)S_n(q) and different approximations that result from a truncation of the series representation demonstrates its good convergence for the given model system. On the other hand it shows explicitly that the coupling between translational (TDOF) and orientational degrees of freedom (ODOF) of each molecule and rotational motion of different molecules can not be neglected in the supercooled regime.Further we report the existence of a prepeak in the ns-static structure factor of the examined fragile glassformer, demonstrating that prepeaks can occur even in the most simple molecular liquids. Besides examining the dependence of the prepeak on the scattering length and the temperature we use the expansion of Sn(q)S_n(q) into molecular correlation functions to point out intermediate range orientational order as its principle origin.Comment: 13 pages, 7 figure

    Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance

    Full text link
    We propose to search for neutron halo isomers populated via γ\gamma-capture in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the 4s1/24s_{1/2} or 3s1/23s_{1/2} neutron shell model state reaches zero binding energy. These halo nuclei can be produced for the first time with new γ\gamma-beams of high intensity and small band width (\le 0.1%) achievable via Compton back-scattering off brilliant electron beams thus offering a promising perspective to selectively populate these isomers with small separation energies of 1 eV to a few keV. Similar to single-neutron halo states for very light, extremely neutron-rich, radioactive nuclei \cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and short-range nuclear force allows the neutron to tunnel far out into free space much beyond the nuclear core radius. This results in prolonged half lives of the isomers for the γ\gamma-decay back to the ground state in the 100 ps-μ\mus range. Similar to the treatment of photodisintegration of the deuteron, the neutron release from the neutron halo isomer via a second, low-energy, intense photon beam has a known much larger cross section with a typical energy threshold behavior. In the second step, the neutrons can be released as a low-energy, pulsed, polarized neutron beam of high intensity and high brilliance, possibly being much superior to presently existing beams from reactors or spallation neutron sources.Comment: accepted for publication in Applied Physics

    Beyond the binary collision approximation for the large-qq response of liquid 4^4He

    Full text link
    We discuss corrections to the linear response of a many-body system beyond the binary collision approximation. We first derive for smooth pair interactions an exact expression of the response 1/q2\propto 1/q^2, considerably simplifying existing forms and present also the generalization for interactions with a strong, short-range repulsion. We then apply the latter to the case of liquid 4^4He. We display the numerical influence of the 1/q21/q^2 correction around the quasi-elastic peak and in the low-intensity wings of the response, far from that peak. Finally we resolve an apparent contradiction in previous discussions around the fourth order cumulant expansion coefficient. Our results prove that the large-qq response of liquid 4^4He can be accurately understood on the basis of a dynamical theory.Comment: 19 p. Figs. available on reques

    Compton scattering beyond the impulse approximation

    Full text link
    We treat the non-relativistic Compton scattering process in which an incoming photon scatters from an N-electron many-body state to yield an outgoing photon and a recoil electron, without invoking the commonly used frameworks of either the impulse approximation (IA) or the independent particle model (IPM). An expression for the associated triple differential scattering cross section is obtained in terms of Dyson orbitals, which give the overlap amplitudes between the N-electron initial state and the (N-1) electron singly ionized quantum states of the target. We show how in the high energy transfer regime, one can recover from our general formalism the standard IA based formula for the cross section which involves the ground state electron momentum density (EMD) of the initial state. Our formalism will permit the analysis and interpretation of electronic transitions in correlated electron systems via inelastic x-ray scattering (IXS) spectroscopy beyond the constraints of the IA and the IPM.Comment: 7 pages, 1 figur

    A microscopic approach to the response of 3^{\bf 3}He -4^{\bf 4}He mixtures

    Full text link
    Correlated Basis Function perturbation theory is used to evaluate the zero temperature response S(q,ω)S(q,\omega) of 3^3He-4^4He mixtures for inelastic neutron scattering, at momentum transfers qq ranging from 1.11.1 to 1.7A˚11.7 \AA^{-1}. We adopt a Jastrow correlated ground state and a basis of correlated particle-hole and phonon states. We insert correlated one particle-one hole and one-phonon states to compute the second order response. The decay of the one-phonon states into two-phonon states is accounted for in boson-boson approximation. The full response is splitted into three partial components Sαβ(q,ω)S_{\alpha \beta}(q,\omega), each of them showing a particle-hole bump and a one phonon, delta shaped peak, which stays separated from the multiphonon background. The cross term S34(q,ω)S_{34}(q,\omega) results to be of comparable importance to S33(q,ω)S_{33}(q,\omega) in the particle-hole sector and to S44(q,ω)S_{44}(q,\omega) in the phonon one. Once the one-phonon peak has been convoluted with the experimental broadening, the computed scattering function is in semiquantitative agreement with recent experimental measurements.Comment: 26 pages, RevTex 3.0, 8 figures available upon reques
    corecore