270 research outputs found

    Extinction imaging of a single quantum emitter in its bright and dark states

    Full text link
    Room temperature detection of single quantum emitters has had a broad impact in fields ranging from biophysics to material science, photophysics, or even quantum optics. These experiments have exclusively relied on the efficient detection of fluorescence. An attractive alternative would be to employ direct absorption, or more correctly expressed "extinction" measurements. Indeed, small nanoparticles have been successfully detected using this scheme in reflection and transmission. Coherent extinction detection of single emitters has also been reported at cryogenic temperatures, but their room temperature implementation has remained a great laboratory challenge owing to the expected weak signal-to-noise ratio. Here we report the first extinction study of a single quantum emitter at ambient condition. We obtain a direct measure for the extinction cross section of a single semiconductor nanocrystal both during and in the absence of fluorescence, for example in the photobleached state or during blinking off-times. Our measurements pave the way for the detection and absorption spectroscopy of single molecules or clusters of atoms even in the quenched state

    Modification of single molecule fluorescence by a scanning probe

    Get PDF
    We examine the optical near-field interaction between different types of scanning tips and single oriented fluorescent molecules. We demonstrate the influence of a tip on the excitation intensity as well as on the integrated fluorescence signal, the excited state lifetime, and the angular emission of single molecules. By using a standard model describing the radiation of an oscillating dipole close to a nanosphere or a flat interface, we interpret our observations and describe some central criteria for obtaining fluorescence enhancement or quenchin

    Spontaneous emission of a nanoscopic emitter in a strongly scattering disordered medium

    Full text link
    Fluorescence lifetimes of nitrogen-vacancy color centers in individual diamond nanocrystals were measured at the interface between a glass substrate and a strongly scattering medium. Comparison of the results with values recorded from the same nanocrystals at the glass-air interface revealed fluctuations of fluorescence lifetimes in the scattering medium. After discussing a range of possible systematic effects, we attribute the observed lengthening of the lifetimes to the reduction of the local density of states. Our approach is very promising for exploring the strong three-dimensional localization of light directly on the microscopic scale.Comment: 9 pages, 4 figure

    Realization of two Fourier-limited solid-state single-photon sources

    Full text link
    We demonstrate two solid-state sources of indistinguishable single photons. High resolution laser spectroscopy and optical microscopy were combined at T = 1.4 K to identify individual molecules in two independent microscopes. The Stark effect was exploited to shift the transition frequency of a given molecule and thus obtain single photon sources with perfect spectral overlap. Our experimental arrangement sets the ground for the realization of various quantum interference and information processing experiments.Comment: 6 page

    Molecules as Sources for Indistinguishable Single Photons

    Full text link
    We report on the triggered generation of indistinguishable photons by solid-state single-photon sources in two separate cryogenic laser scanning microscopes. Organic fluorescent molecules were used as emitters and investigated by means of high resolution laser spectroscopy. Continuous-wave photon correlation measurements on individual molecules proved the isolation of single quantum systems. By using frequency selective pulsed excitation of the molecule and efficient spectral filtering of its emission, we produced triggered Fourier-limited single photons. In a further step, local electric fields were applied to match the emission wavelengths of two different molecules via Stark effect. Identical single photons are indispensible for the realization of various quantum information processing schemes proposed. The solid-state approach presented here prepares the way towards the integration of multiple bright sources of single photons on a single chip.Comment: Accepted for publication in J. Mod. Opt. This is the original submitted versio

    High-cooperativity nanofiber laser

    Get PDF
    Cavity-free efficient coupling between emitters and guided modes is of great current interest for nonlinear quantum optics as well as efficient and scalable quantum information processing. In this work, we extend these activities to the coupling of organic dye molecules to a highly confined mode of a nanofiber, allowing mirrorless and low-threshold laser action in an effective mode volume of less than 100 femtoliters. We model this laser system based on semi-classical rate equations and present an analytic compact form of the laser output intensity. Despite the lack of a cavity structure, we achieve a coupling efficiency of the spontaneous emission to the waveguide mode of 0.07(0.01), in agreement with our calculations. In a further experiment, we also demonstrate the use of a plasmonic nanoparticle as a dispersive output coupler. Our laser architecture is promising for a number of applications in optofluidics and provides a fundamental model system for studying nonresonant feedback stimulated emission

    Controlled photon transfer between two individual nanoemitters via shared high-Q modes of a microsphere resonator

    Full text link
    We realize controlled cavity-mediated photon transfer between two single nanoparticles over a distance of several tens of micrometers. First, we show how a single nanoscopic emitter attached to a near-field probe can be coupled to high-Q whispering-gallery modes of a silica microsphere at will. Then we demonstrate transfer of energy between this and a second nanoparticle deposited on the sphere surface. We estimate the photon transfer efficiency to be about six orders of magnitude higher than that via free space propagation at comparable separations.Comment: accepted for publication in Nano Letter

    Single-Photon Imaging and Efficient Coupling to Single Plasmons

    Full text link
    We demonstrate strong coupling of single photons emitted by individual molecules at cryogenic and ambient conditions to individual nanoparticles. We provide images obtained both in transmission and reflection, where an efficiency greater than 55% was achieved in converting incident narrow-band photons to plasmon-polaritons (plasmons) of a silver nanoparticle. Our work paves the way to spectroscopy and microscopy of nano-objects with sub-shot noise beams of light and to triggered generation of single plasmons and electrons in a well-controlled manner

    Near-field imaging and frequency tuning of a high-Q photonic crystal membrane microcavity

    Full text link
    We discuss experimental studies of the interaction between a nanoscopic object and a photonic crystal membrane resonator of quality factor Q=55000. By controlled actuation of a glass fiber tip in the near-field of a photonic crystal, we constructed a complete spatio-spectral map of the resonator mode and its coupling with the fiber-tip. On the one hand, our findings demonstrate that scanning probes can profoundly influence the optical characteristics and the near-field images of photonic devices. On the other hand, we show that the introduction of a nanoscopic object provides a low-loss method for on-command tuning of a photonic crystal resonator frequency. Our results are in a very good agreement with the predictions of a combined numerical/analytical theory.Comment: 9 pages, 4 figure
    corecore