23 research outputs found

    One and two-center processes in high-order harmonic generation in diatomic molecules: influence of the internuclear separation

    Full text link
    We analyze the influence of different recombination scenarios, involving one or two centers, on high-order harmonic generation (HHG) in diatomic molecules, for different values of the internuclear separation. We work within the strong-field approximation, and employ modified saddle-point equations, in which the structure of the molecule is incorporated. We find that the two-center interference patterns, attributed to high-order harmonic emission at spatially separated centers, are formed by the quantum interference of the orbits starting at a center CjC_{j} and finishing at a different center CνC_{\nu } in the molecule with those starting and ending at a same center Cj.C_{j}. Within our framework, we also show that contributions starting at different centers exhibit different orders of magnitude, due to the influence of additional potential-energy shifts. This holds even for small internuclear distances. Similar results can also be obtained by considering single-atom saddle-point equations and an adequate choice of molecular prefactors.Comment: 8 pages, 5 figure

    A Combination of Two Human Monoclonal Antibodies Limits Fetal Damage by Zika Virus in Macaques

    Get PDF
    Human infection by Zika virus (ZIKV) during pregnancy can lead to vertical transmission and fetal aberrations, including microcephaly. Prophylactic administration of antibodies can diminish or prevent ZIKV infection in animal models, but whether passive immunization can protect nonhuman primates and their fetuses during pregnancy has not been determined. Z004 and Z021 are neutralizing monoclonal antibodies to domain III of the envelope (EDIII) of ZIKV. Together the two antibodies protect nonpregnant macaques against infection even after Fc modifications to prevent antibody-dependent enhancement in vitro (ADE) and extend their half-lives. Here we report on prophylactic co-administration of the Fc-modified antibodies to pregnant rhesus macaques challenged 3 times with ZIKV during first and second trimester. The two antibodies did not entirely eliminate maternal viremia but limited vertical transmission protecting the fetus from neurologic damage. Thus, maternal passive immunization with two antibodies to EDIII can shield primate fetuses from the harmful effects of ZIKV

    A Combination of Two Human Monoclonal Antibodies Limits Fetal Damage by Zika Virus in Macaques

    Get PDF
    Human infection by Zika virus (ZIKV) during pregnancy can lead to vertical transmission and fetal aberrations, including microcephaly. Prophylactic administration of antibodies can diminish or prevent ZIKV infection in animal models, but whether passive immunization can protect nonhuman primates and their fetuses during pregnancy has not been determined. Z004 and Z021 are neutralizing monoclonal antibodies to domain III of the envelope (EDIII) of ZIKV. Together the two antibodies protect nonpregnant macaques against infection even after Fc modifications to prevent antibody-dependent enhancement in vitro (ADE) and extend their half-lives. Here we report on prophylactic co-administration of the Fc-modified antibodies to pregnant rhesus macaques challenged 3 times with ZIKV during first and second trimester. The two antibodies did not entirely eliminate maternal viremia but limited vertical transmission protecting the fetus from neurologic damage. Thus, maternal passive immunization with two antibodies to EDIII can shield primate fetuses from the harmful effects of ZIKV
    corecore