367 research outputs found
Recent results of a seismically isolated optical table prototype designed for advanced LIGO
The Horizontal Access Module Seismic Attenuation System (HAM-SAS) is a mechanical device expressly designed to isolate a multipurpose optical table and fit in the tight space of the LIGO HAM Ultra-High-Vacuum chamber. Seismic attenuation in the detectors' sensitivity frequency band is achieved with state of the art passive mechanical attenuators. These devices should provide an attenuation factor of about 70dB above 10Hz at the suspension point of the Advanced LIGO triple pendulum suspension. Automatic control techniques are used to position the optical table and damp rigid body modes. Here, we report the main results obtained from the full scale prototype installed at the MIT LIGO Advanced System Test Interferometer (LASTI) facility. Seismic attenuation performance, control strategies, improvements and limitations are also discussed
Alignment procedure for the VIRGO Interferometer: experimental results from the Frascati prototype
A small fixed-mirror Michelson interferometer has been built in Frascati to
experimentally study the alignment method that has been suggested for VIRGO.
The experimental results fully confirm the adequacy of the method. The minimum
angular misalignment that can be detected in the present set-up is 10
nrad/sqrt{Hz}Comment: 10 pages, LaTex2e, 4 figures, 5 tables. Submitted to Phys. Lett.
ABSOLUTE BUNCH LENGTH MEASUREMENTS AT THE ALS BY INCOHERENTSYNCHROTRON RADIATION FLUCTUATION ANALYSIS
By analysing the pulse to pulse intensity fluctuations ofthe radiation emitted by a charge particle in the incoherent part of thespectrum, it is possible to extract information about the spatialdistribution of the beam. At the Advanced Light Source (ALS) of theLawrence Berkeley National Laboratory, we have developed and tested asimple scheme based on this principle that allows for the absolutemeasurement of the bunch length. A description of the method and theexperimental results are presented
High Sensitivity Accelerometers for High Performance Seismic Attenuators
We present concepts and features of a new horizontal accelerometer whose mechanical design and machining process aim to improve the sensitivity in the frequency region between 10 mHz and 1 Hz. The expected sensitivity, less than 10^(â11) m/s^2/âHz around 100 mHz, is a couple of orders of magnitude below the state of art limits. This accelerometer could be integrated in the active control of the LIGO II mirror seismic isolators
Benefits of Artificially Generated Gravity Gradients for Interferometric Gravitational-Wave Detectors
We present an approach to experimentally evaluate gravity gradient noise, a
potentially limiting noise source in advanced interferometric gravitational
wave (GW) detectors. In addition, the method can be used to provide sub-percent
calibration in phase and amplitude of modern interferometric GW detectors.
Knowledge of calibration to such certainties shall enhance the scientific
output of the instruments in case of an eventual detection of GWs. The method
relies on a rotating symmetrical two-body mass, a Dynamic gravity Field
Generator (DFG). The placement of the DFG in the proximity of one of the
interferometer's suspended test masses generates a change in the local
gravitational field detectable with current interferometric GW detectors.Comment: 16 pages, 4 figure
First search for gravitational waves from the youngest known neutron star
We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia
A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser
Interferometer Gravitational-Wave Observatory. It searches gravitational-wave frequencies from 100 to 300 Hz
and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and
for different spin-down mechanisms. No gravitational-wave signal was detected. Within the range of search
frequencies, we set 95% confidence upper limits of (0.7â1.2) Ă 10^(â24) on the intrinsic gravitational-wave
strain, (0.4â4) Ă 10^(â4) on the equatorial ellipticity of the neutron star, and 0.005â0.14 on the amplitude of
r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy
conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway r-modes.
This paper is also the first gravitational-wave search to present upper limits on the r-mode amplitude
Upper Limits on a Stochastic Background of Gravitational Waves
The Laser Interferometer Gravitational-Wave Observatory has performed a third science run with much improved sensitivities of all three interferometers. We present an analysis of approximately 200 hours of data acquired during this run, used to search for a stochastic background of gravitational radiation. We place upper bounds on the energy density stored as gravitational radiation for three different spectral power laws. For the flat spectrum, our limit of Ί_0<8.4Ă10^(-4) in the 69â156 Hz band is ~10^5 times lower than the previous result in this frequency range
- âŚ