516 research outputs found

    Arms Without Influence? Spatial Distribution of Defense Industrial Activity, Transatlantic Burden Sharing, and Strategy

    No full text

    Search for the lepton flavor violating τ\tau \to 3μ\mu decay in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for the lepton flavor violating τ\tau \to 3μ\mu decay is performed using proton-proton collision events at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC in 2017-2018, corresponding to an integrated luminosity of 97.7 fb1^{-1}. Tau leptons produced in both heavy-flavor hadron and W boson decays are exploited in the analysis. No evidence for the decay is observed. The results of this search are combined with an earlier null result based on data collected in 2016 to obtain a total integrated luminosity of 131 fb1^{-1}. The observed (expected) upper limits on the branching fraction B\mathcal{B}(τ\tau \to 3μ\mu) at confidence levels of 90 and 95% are 2.9×\times108^{-8} (2.4×\times108^{-8}) and 3.6×\times108^{-8} (3.0×\times108^{-8}), respectively

    Search for baryon number violation in top quark production and decay using proton-proton collisions at s= \sqrt{s} = 13 TeV

    No full text
    A search is presented for baryon number violating interactions in top quark production and decay. The analysis uses data from proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC with an integrated luminosity of 138 fb1 ^{-1} . Candidate events are selected by requiring two oppositely-charged leptons (electrons or muons) and exactly one jet identified as originating from a bottom quark. Multivariate discriminants are used to separate the signal from the background. No significant deviation from the standard model prediction is observed. Upper limits are placed on the strength of baryon number violating couplings. For the first time the production of single top quarks via baryon number violating interactions is studied. This allows the search to set the most stringent constraints to date on the branching fraction of the top quark decay to a lepton, an up-type quark (u or c), and a down-type quark (d, s, or b). The results improve the previous bounds by three to six orders of magnitude based on the fermion flavor combination of the baryon number violating interactions.A search is presented for baryon number violating interactions in top quark production and decay. The analysis uses data from proton-proton collisions at a center-of-mass energy of 13 TeV, collected with the CMS detector at the LHC with an integrated luminosity of 138 fb1^{-1}. Candidate events are selected by requiring two oppositely-charged leptons (electrons or muons) and exactly one jet identified as originating from a bottom quark. Multivariate discriminants are used to separate the signal from the background. No significant deviation from the standard model prediction is observed. Upper limits are placed on the strength of baryon number violating couplings. For the first time the production of single top quarks via baryon number violating interactions is studied. This allows the search to set the most stringent constraints to date on the branching fraction of the top quark decay to a lepton, an up-type quark (u or c), and a down-type quark (d, s, or b). The results improve the previous bounds by three to six orders of magnitude based on the fermion flavor combination of the baryon number violating interactions

    Observation of the J/ψ\psi \to μ+μμ+μ\mu^+\mu^-\mu^+\mu^- decay in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe J/ψ\psi\toμ+μμ+μ\mu^+\mu^-\mu^+\mu^- decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb1{-1}. Normalizing to the J/ψ\psi\toμ+μ\mu^+\mu^- decay mode leads to a branching fraction [10.12.7+3.3^{+3.3}_{-2.7} (stat) ±\pm 0.4 (syst) ]×\times 107^{-7}, a value that is consistent with the standard model prediction

    Observation of the J/ψ\psi\toμ+μμ+μ\mu^+\mu^-\mu^+\mu^- decay in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe J/ψ\psi\toμ+μμ+μ\mu^+\mu^-\mu^+\mu^- decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb1{-1}. Normalizing to the J/ψ\psi\toμ+μ\mu^+\mu^- decay mode leads to a branching fraction [10.12.7+3.3^{+3.3}_{-2.7} (stat) ±\pm 0.4 (syst) ]×\times 107^{-7}, a value that is consistent with the standard model prediction

    Review of top quark mass measurements in CMS

    No full text
    International audienceThe top quark mass is one of the most intriguing parameters of the standard model (SM). Its value indicates a Yukawa coupling close to unity, and the resulting strong ties to the Higgs physics make the top quark mass a crucial ingredient for understanding essential aspects of the electroweak sector of the SM. While it is such an important parameter of the SM, its measurement and interpretation in terms of the Lagrangian parameter are challenging. The CMS Collaboration has performed multiple measurements of the top quark mass, addressing these challenges from different angles: highly precise `direct' measurements, using the top quark decay products, as well as `indirect' measurements aiming at accurate interpretations in terms of the Lagrangian parameter. Recent mass measurements using Lorentz-boosted top quarks are particularly promising, opening a new avenue of measurements based on top quark decay products contained in a single particle jet, with superior prospects for accurate theoretical interpretations. Moreover, dedicated studies of the dominant uncertainties in the modelling of the signal processes have been performed. This review offers the first comprehensive overview of these measurements performed by the CMS Collaboration using the data collected at centre-of-mass energies of 7, 8, and 13 TeV

    Review of top quark mass measurements in CMS

    No full text
    International audienceThe top quark mass is one of the most intriguing parameters of the standard model (SM). Its value indicates a Yukawa coupling close to unity, and the resulting strong ties to the Higgs physics make the top quark mass a crucial ingredient for understanding essential aspects of the electroweak sector of the SM. While it is such an important parameter of the SM, its measurement and interpretation in terms of the Lagrangian parameter are challenging. The CMS Collaboration has performed multiple measurements of the top quark mass, addressing these challenges from different angles: highly precise `direct' measurements, using the top quark decay products, as well as `indirect' measurements aiming at accurate interpretations in terms of the Lagrangian parameter. Recent mass measurements using Lorentz-boosted top quarks are particularly promising, opening a new avenue of measurements based on top quark decay products contained in a single particle jet, with superior prospects for accurate theoretical interpretations. Moreover, dedicated studies of the dominant uncertainties in the modelling of the signal processes have been performed. This review offers the first comprehensive overview of these measurements performed by the CMS Collaboration using the data collected at centre-of-mass energies of 7, 8, and 13 TeV

    Search for the lepton flavor violating τ ⁣ ⁣3μ \tau \!\to\! 3\mu decay in proton-proton collisions at s= \sqrt{s} = 13 TeV

    No full text
    A search for the lepton flavor violating τ ⁣ ⁣3μ \tau \!\to\! 3\mu decay is performed using proton-proton collision events at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC in 2017--2018, corresponding to an integrated luminosity of 97.7 fb1 ^{-1} . Tau leptons produced in both heavy-flavor hadron and W boson decays are exploited in the analysis. No evidence for the decay is observed. The results of this search are combined with an earlier null result based on data collected in 2016 to obtain a total integrated luminosity of 131 fb1 ^{-1} . The observed (expected) upper limits on the branching fraction B(τ ⁣ ⁣3μ) \mathcal{B}(\tau \!\to\! 3\mu) at confidence levels of 90 and 95% are 2.9 × \times 108^{-8} (2.4 × \times 108^{-8} ) and 3.6 × \times 108^{-8} (3.0 × \times 108^{-8} ), respectively.A search for the lepton flavor violating τ\tau \to 3μ\mu decay is performed using proton-proton collision events at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC in 2017-2018, corresponding to an integrated luminosity of 97.7 fb1^{-1}. Tau leptons produced in both heavy-flavor hadron and W boson decays are exploited in the analysis. No evidence for the decay is observed. The results of this search are combined with an earlier null result based on data collected in 2016 to obtain a total integrated luminosity of 131 fb1^{-1}. The observed (expected) upper limits on the branching fraction B\mathcal{B}(τ\tau \to 3μ\mu) at confidence levels of 90 and 95% are 2.9×\times108^{-8} (2.4×\times108^{-8}) and 3.6×\times108^{-8} (3.0×\times108^{-8}), respectively
    corecore