18 research outputs found

    Impact of heavy metal polluted wastewater sediment on element content and enzyme activity of Sudan grass

    Get PDF
    Growth chamber pot experiment was set up with two varieties of Sudan grass. Plants were grown in uncontaminated (control) topsoil of the former wastewater settling pond from Debrecen, which was amended with 10% (m/m) of wastewater sediment (P: 5125; Fe: 22756, Pb: 287; Cr: 1027; Zn: 888 mg/kg). The elemental composition of soil and shoots of plants and activities of some enzymes in leaves were measured. It can be concluded that the roots and shoots of plant individuals of both varieties consistently took up higher concentrations of each of the elements from the medium "enriched" with wastewater sediment. The elevated element concentrations were found in some cases in the roots, and in other cases in the leaves (K: ~2000 (soil) - ~13000 (root) - ~30000 (shoot) mg/kg; Cr: ~330 (soil) - ~3,30 (root) - ~0,189 (shoot) mg/kg). The excessive accumulation of toxic elements was not observed. The activities of four enzymes were measured in the leaves of plants (glucose 6-phosphate dehydrogenase, G6PDH; isocitrate-dehydrogenase, ICDH; peroxidase, POX; catalase, CAT). The enzyme activities of POX increased meanwhile that of CAT decreased significantly, in spite of slight differences. As a trend, the specific activity for G6PDH increased by 26% (GK Csaba) and 36% (Akklimat), while values for ICDH became higher by 28% (GK Csaba) and 41.5% (Akklimat), for the two varieties studied, respectively. The latter results were not statistically supported

    The effect of toxic elements on the microanatomy of the leaves of the Salix alba L.

    Get PDF
    The effects of a heavy metal containing wastewater sediment on two cultivars of white willow were investigated in a pot experiment. Our aim was to examine the effect of toxic elements on the microanatomical parameters of the leaves of the tested plant. We examined the following parameters: stomatic density, stoma width and length, lamina thickness, adaxial and abaxial epidermis thickness, mesophyll thickness, palisad and spongy parenchyma thickness, main vein width and length. The experiment had the following results: with the presence of toxic elements, the thickness of the lamina increased, within this, there was a significant growth in the thickness of the spongy parenchyma.  The width and the length of the main vein decreased, so did the extent of the xylem cavities. The extent of the collenchymal stock of the leaf venation increased. The number of stomas increased, but the size of the stomas decreased. As a result of toxic element contamination, the number of Ca-oxalate crystals increased within the leaf mesophyll

    A tönkölybĂșza (Triticum spelta L.) elemfelvĂ©tele szennyvĂ­zĂŒledĂ©kbƑl

    Get PDF
    FĂ©nyszobĂĄs tenyĂ©szedĂ©nyes kĂ­sĂ©rletet ĂĄllĂ­tottunk be a NyĂ­regyhĂĄzi Egyetemen a Debrecen LovĂĄsz-zugbĂłl szĂĄrmazĂł, toxikus elemekkel (elsƑsorban krĂłmmal) szennyezett talajjal (mely egy szennyvĂ­z utĂłĂŒlepĂ­tƑ tĂł rekultivĂĄciĂłja sorĂĄn felhasznĂĄlt talajtakarĂł volt), illetve kadmiumot, krĂłmot, rezet, nikkelt, Ăłlmot Ă©s cinket a hatĂĄrĂ©rtĂ©kek felett tartalmazĂł Debrecen lovĂĄsz-zugi szennyvĂ­zĂŒledĂ©kkel. KĂ­sĂ©rletĂŒnk cĂ©lja az volt, hogy a környezeti stressz-faktorok irĂĄnt tolerĂĄnsnak feltĂ©telezett lĂĄgy szĂĄrĂș növĂ©nyfaj, a tönkölybĂșza (Triticum spelta L.) tenyĂ©szedĂ©nyekben törtĂ©nƑ termesztĂ©sĂ©vel, modell-kĂ­sĂ©rlettel megismerjĂŒk Ă©s összehasonlĂ­tsuk e növĂ©nyfaj kĂ©t vonalĂĄnak (cv. GK FehĂ©r "A"; cv. GK FehĂ©r "B") tĂĄp- Ă©s toxikuselem-felvĂ©teli interakciĂłit a talajjal, illetve a szennyvĂ­zĂŒledĂ©kkel (10% m/m) kevert talajjal. 52 napos növĂ©nynevelĂ©st követƑen megĂĄllapĂ­tottuk, hogy a szennyvĂ­zĂŒledĂ©k a kontrollhoz viszonyĂ­tva jelentƑsen megemelte mind a gyökerekben, mind a hajtĂĄsokban a foszfor-, kĂĄlium-, kalcium-, magnĂ©zium-, Ă©s nĂĄtriumkoncentrĂĄciĂłkat mindkĂ©t tönkölybĂșza vonal esetĂ©n. A vizsgĂĄlt makroelemek − a kalcium Ă©s a nĂĄtrium kivĂ©telĂ©vel − a tönkölybĂșza hajtĂĄsĂĄban nagyobb mennyisĂ©gben voltak kimutathatĂłak, mint a gyökĂ©rĂ©ben. A szennyvĂ­zĂŒledĂ©k mindkĂ©t tönkölybĂșza vonal gyökereiben Ă©s hajtĂĄsaiban egyarĂĄnt megemelte az esszenciĂĄlis mikroelemek (Cu, Fe, Mn, Zn) koncentrĂĄciĂłit a kontrollhoz viszonyĂ­tva. A tönkölybĂșza toxikuselem-felvĂ©telĂ©t (As, Ba, Cd, Cr, Ni, Pb) elemezve megĂĄllapĂ­thatĂł, hogy a gyökerekben lĂ©nyegesen több halmozĂłdott fel a hajtĂĄsokhoz kĂ©pest, Ă©s a kijuttatott szennyvĂ­zĂŒledĂ©k valamennyi toxikus elem koncentrĂĄciĂłjĂĄt jelentƑsen megnövelte a kontroll kultĂșrĂĄkhoz viszonyĂ­tva, mind a gyökerekben, mind a hajtĂĄsokban. Nem tudtuk azonban igazolni, hogy a nemesĂ­tƑk ĂĄltal szenzitĂ­vebbnek feltĂ©telezett GK FehĂ©r tönkölybĂșza fajta „A” vonala Ă©rzĂ©kenyebben reagĂĄl a toxikuselem-szennyezĂ©s okozta stresszre, illetve több toxikus elemet vesz fel, mint a tolerĂĄnsabbnak tekintett „B” vonal. Abstract: Uptake of various mineral nutrients and accumulation of toxic elements was studied in spelt (Triticum spelta L. lines „A” and „B”) from a soil moderately contaminated with toxic elements (prevalently with chromium; 111-128 mg/kg), and from a sewage sediment contaminated with cadmium (1.27 mg/kg), chromium (1027 mg/kg), copper (189 mg/kg), nickel (49.5 mg/kg), lead (287 mg/kg), and zinc (888 mg/kg). Contaminated cover soil and sewage sediment originated from Debrecen LovĂĄsz-zug, Hungary (47029’000’’ N, 21035’738’’ E), from a former wastewater postsettling pond. Spelt was grown in a pot experiment for 52 days in a growth chamber, in cover soil (as a control) and in cover soil treated with 10% (m/m) sewage sediment. It was found that application of sewage sediment significantly enhanced the uptake of macro- and mezoelements (P, K, Ca, Mg, Na), and essential microelements (Cu, Fe, Mn, Zn) both in roots and shoots of spelt. Toxic elements (As, Ba, Cd, Cr, Ni, Pb) accumulated prevalently in the roots of plants, and the applied sewage sediment significantly increased their concentration in roots and shoots, as compared to the control cultures. Breeders supposed line „A” of spelt to be more sensitive for abiotic stresses (e.g. toxic element contamination) than line “B”. This hypothesis, however, was not confirmed by our observations

    A tönkölybĂșza (Triticum spelta L.) elemfelvĂ©tele szennyvĂ­zĂŒledĂ©kbƑl

    Get PDF
    Uptake of various mineral nutrients and accumulation of toxic elements was studied in spelt (Triticum spelta L. lines „A” and „B”) from a soil moderately contaminated with toxic elements (prevalently with chromium; 111-128 mg/kg), and from a sewage sediment contaminated with cadmium (1.27 mg/kg), chromium (1027 mg/kg), copper (189 mg/kg), nickel (49.5 mg/kg), lead (287 mg/kg), and zinc (888 mg/kg). Contaminated cover soil and sewage sediment originated from Debrecen LovĂĄsz-zug, Hungary (47029’000’’ N, 21035’738’’ E), from a former wastewater postsettling pond. Spelt was grown in a pot experiment for 52 days in a growth chamber, in cover soil (as a control) and in cover soil treated with 10% (m/m) sewage sediment. It was found that application of sewage sediment significantly enhanced the uptake of macro- and mezoelements (P, K, Ca, Mg, Na), and essential microelements (Cu, Fe, Mn, Zn) both in roots and shoots of spelt. Toxic elements (As, Ba, Cd, Cr, Ni, Pb) accumulated prevalently in the roots of plants, and the applied sewage sediment significantly increased their concentration in roots and shoots, as compared to the control cultures. Breeders supposed line „A” of spelt to be more sensitive for abiotic stresses (e.g. toxic element contamination) than line “B”. This hypothesis, however, was not confirmed by our observations.FĂ©nyszobĂĄs tenyĂ©szedĂ©nyes kĂ­sĂ©rletet ĂĄllĂ­tottunk be a NyĂ­regyhĂĄzi Egyetemen a Debrecen LovĂĄsz-zugbĂłl szĂĄrmazĂł, toxikus elemekkel (elsƑsorban krĂłmmal) szennyezett talajjal (mely egy szennyvĂ­z utĂłĂŒlepĂ­tƑ tĂł rekultivĂĄciĂłja sorĂĄn felhasznĂĄlt talajtakarĂł volt), illetve kadmiumot, krĂłmot, rezet, nikkelt, Ăłlmot Ă©s cinket a hatĂĄrĂ©rtĂ©kek felett tartalmazĂł Debrecen lovĂĄsz-zugi szennyvĂ­zĂŒledĂ©kkel. KĂ­sĂ©rletĂŒnk cĂ©lja az volt, hogy a környezeti stressz-faktorok irĂĄnt tolerĂĄnsnak feltĂ©telezett lĂĄgy szĂĄrĂș növĂ©nyfaj, a tönkölybĂșza (Triticum spelta L.) tenyĂ©szedĂ©nyekben törtĂ©nƑ termesztĂ©sĂ©vel, modell-kĂ­sĂ©rlettel megismerjĂŒk Ă©s összehasonlĂ­tsuk e növĂ©nyfaj kĂ©t vonalĂĄnak (cv. GK FehĂ©r "A"; cv. GK FehĂ©r "B") tĂĄp- Ă©s toxikuselem-felvĂ©teli interakciĂłit a talajjal, illetve a szennyvĂ­zĂŒledĂ©kkel (10% m/m) kevert talajjal. 52 napos növĂ©nynevelĂ©st követƑen megĂĄllapĂ­tottuk, hogy a szennyvĂ­zĂŒledĂ©k a kontrollhoz viszonyĂ­tva jelentƑsen megemelte mind a gyökerekben, mind a hajtĂĄsokban a foszfor-, kĂĄlium-, kalcium-, magnĂ©zium-, Ă©s nĂĄtriumkoncentrĂĄciĂłkat mindkĂ©t tönkölybĂșza vonal esetĂ©n. A vizsgĂĄlt makroelemek − a kalcium Ă©s a nĂĄtrium kivĂ©telĂ©vel − a tönkölybĂșza hajtĂĄsĂĄban nagyobb mennyisĂ©gben voltak kimutathatĂłak, mint a gyökĂ©rĂ©ben. A szennyvĂ­zĂŒledĂ©k mindkĂ©t tönkölybĂșza vonal gyökereiben Ă©s hajtĂĄsaiban egyarĂĄnt megemelte az esszenciĂĄlis mikroelemek (Cu, Fe, Mn, Zn) koncentrĂĄciĂłit a kontrollhoz viszonyĂ­tva. A tönkölybĂșza toxikuselem-felvĂ©telĂ©t (As, Ba, Cd, Cr, Ni, Pb) elemezve megĂĄllapĂ­thatĂł, hogy a gyökerekben lĂ©nyegesen több halmozĂłdott fel a hajtĂĄsokhoz kĂ©pest, Ă©s a kijuttatott szennyvĂ­zĂŒledĂ©k valamennyi toxikus elem koncentrĂĄciĂłjĂĄt jelentƑsen megnövelte a kontroll kultĂșrĂĄkhoz viszonyĂ­tva, mind a gyökerekben, mind a hajtĂĄsokban. Nem tudtuk azonban igazolni, hogy a nemesĂ­tƑk ĂĄltal szenzitĂ­vebbnek feltĂ©telezett GK FehĂ©r tönkölybĂșza fajta „A” vonala Ă©rzĂ©kenyebben reagĂĄl a toxikuselem-szennyezĂ©s okozta stresszre, illetve több toxikus elemet vesz fel, mint a tolerĂĄnsabbnak tekintett „B” vonal

    Long-term field fertilization experiment with energy willow (Salix sp.) − Elemental composition and chlorophyll fluorescence in the leaves

    Get PDF
    A small-plot long-term field fertilization experiment was set up in 2011 with willow (Salix triandra x Salix viminalis ’Inger’) grown as an energy crop in NyĂ­regyhĂĄza, Hungary. The brown forest soil was treated three times (in June 2011, May 2013, May 2016) with municipal biocompost (MBC), municipal sewage sludge compost (MSSC) or willow ash (WA), and twice (June 2011, May 2013) with rhyolite tuff (RT). In late May – early June 2016 urea (U) and sulphuric urea (SU) fertilizers were also applied to the soil as top-dressing (TD). These fertilizers and amendments were also applied to the soil in 2016 in the combinations; MBC+SU, RT+SU, WA+SU and MSSC+WA. All the treatments were repeated four times. In July 2016 the highest nitrogen concentrations in willow leaves were measured in the U (3.47 m/m%) and SU (3.01 m/m%) treatments, and these values were significantly higher than the control (2.46 m/m%). An excess of nitrogen considerably reduced the Zn uptake of the leaves, with values of 39.5 ÎŒg g-1 in the U treatment, 53.4 ÎŒg g-1 in the SU treatment, and 63.5 ÎŒg g-1 in the control. All other amendments or TDs, except for WA, enhanced the specific potassium concentrations in willow leaves compared to the control. No significant quantities of toxic elements (As, Ba, Cd, Pb) were transported from soil amendments or TDs to the willow leaves. In July 2016 the most intensive leaf chlorophyll fluorescence was observed in the MSSC and MSSC+WA treatments

    Toxikus elemekkel szennyezett szennyvĂ­zĂŒledĂ©k hatĂĄsa egy szudĂĄnifƱ hibrid növĂ©nymorfolĂłgiai paramĂ©tereire tenyĂ©szedĂ©nyes kĂ­sĂ©rletben

    Get PDF
    In addition to industrial activities, mining, transport and landfilling, agricultural activity is also a source of soil pollution. With the use of intensive fertilisers, soil conditioners, disinfectant materials, and pesticides we can pollute the soil to varying degree, but the most significant is the impact of sewage sludge displacement. In this case, the heavy metal content of the soil may increase, and it can become accessible to the plants, thereby entering into the food chain. Several researchers have examined how the herbaceous and woody plants react to heavy metal contamination and whether they are suitable for phytoremediation of heavy metals contaminated areas. Those plant species that can tolerate high concentrations of certain toxic metals (heavy metals) or bind them, are capable of reducing the mobile heavy metal content of contaminated soils. Heavy metals have some - usually negative - effects on all plant life processes (growth, photosynthesis, water balance, ion uptake, etc.), which are also manifested in the external morphological properties of „poisoned” plants. In our pot experiments we examined how the various amounts of sewage sediment influence the morphological properties of the test plant. We chose the test plant sorghum x Sudan grass hybrid (cv. GK Csaba), which has a high production and disease resistance features, beside low demand for terroir or soil.The experiment was set up with 3 treatments (control, 10% sewage sediment, 20% sewage sediment).We designed 3 repetitions per treatment with 6-6 plants per repetition. The measured morphological parameters were the total length of the plants, the number of leaves, the length and width of the most developed leaf, leaf plate and stem diameter and the mass of the plant parts above the ground.According to our results, the above-ground vegetative parts of the plants developed in the same way as the control, under the influence of 10% sewage sediment contamination. Treated plants were not behind the control in respect of development, growth, number of leaves or leaf size. In the case of slight contamination, the above-ground vegetative mass exceeded the values measured in control. In plants treated with 20% sewage sediment, similar results were obtained. The total length, the letter number and the leaf parameters of the plants were not significantly different from the control, and even the weight of the plant increased in this treatment. It can therefore be concluded that the low level of sewage sediment soil loading had no negative impacts on the morphological parameters of the Sudan grass hybrid. It can be supposed that the significant nutrient content of the sewage sediment compensated the toxic effects of the heavy metals present in this material.Az ipari tevĂ©kenysĂ©g, bĂĄnyĂĄszat, közlekedĂ©s, hulladĂ©klerakĂĄs mellett a mezƑgazdasĂĄgitevĂ©kenysĂ©g is a talaj szennyezƑ forrĂĄsai közĂ© sorolandĂł. IntenzĂ­v mƱtrĂĄgyĂĄzĂĄssal, talajjavĂ­tĂł, fertƑtlenĂ­tƑ anyagok, kĂĄrtevƑk elleni anyagok, növĂ©nyvĂ©dƑ szerek hasznĂĄlatĂĄval kĂŒlönbözƑ mĂ©rtĂ©kben szennyezhetjĂŒk a talajt, de legjelentƑsebb a szennyvĂ­ziszap elhelyezĂ©ssel kivĂĄltott hatĂĄs.Ebben az esetben a talaj nehĂ©zfĂ©m-tartalma jelentƑsen megemelkedhet, a talajban felhalmozĂłdva pedig a toxikus elemek a növĂ©nyek szĂĄmĂĄra hozzĂĄfĂ©rhetƑvĂ© vĂĄlhatnak, bekerĂŒlve ezzel a tĂĄplĂĄlĂ©klĂĄncba. Több kutatĂł is foglalkozott azzal, hogy a lĂĄgy Ă©s fĂĄs szĂĄrĂș növĂ©nyek hogyan reagĂĄlnak a nehĂ©zfĂ©m-szennyezĂ©sre Ă©s alkalmasak-e a nehĂ©zfĂ©mekkel szennyezett terĂŒletek fitoremediĂĄciĂłjĂĄra.Azok a növĂ©nyfajok, melyek kĂ©pesek tolerĂĄlni bizonyos fĂ©mek (nehĂ©zfĂ©mek) magas koncentrĂĄciĂłjĂĄt, azt kĂ©pesek megkötni, alkalmasak a szennyezett terĂŒletek nehĂ©zfĂ©m-tartalmĂĄnak csökkentĂ©sĂ©re. A nehĂ©zfĂ©mek valamennyi növĂ©nyi Ă©letfolyamatra (növekedĂ©s, fotoszintĂ©zis, vĂ­zhĂĄztartĂĄs, ionfelvĂ©tel, stb.) valamilyen - ĂĄltalĂĄban negatĂ­v - hatĂĄst gyakorolnak, melyek a „szennyezett” növĂ©nyek kĂŒlsƑ, morfolĂłgiai tulajdonsĂĄgaiban is megmutatkoznak. TenyĂ©szedĂ©nyes kĂ­sĂ©rleteink sorĂĄn arra kerestĂŒnk vĂĄlaszt, hogy kĂŒlönbözƑ mĂ©rtĂ©kƱ szennyvĂ­zĂŒledĂ©k-kezelĂ©s milyen hatĂĄst gyakorol a tesztnövĂ©ny morfolĂłgiai tulajdonsĂĄgaira. VizsgĂĄlt tesztnövĂ©nynek a cirok x szudĂĄnifƱ hibridet (cv. GK Csaba) vĂĄlasztottuk, mely nagy termƑ- Ă©s betegsĂ©g-ellenĂĄllĂł kĂ©pessĂ©ggel rendelkezik, termƑhely irĂĄnt kevĂ©sbĂ© igĂ©nyes fajta. A kĂ­sĂ©rletet 3 kezelĂ©ssel (kontroll, 10 %-os szennyvĂ­zĂŒledĂ©k-terhelĂ©s, 20 %-os szennyvĂ­zĂŒledĂ©k-terhelĂ©s) ĂĄllĂ­tottuk be. KezelĂ©senkĂ©nt 3 ismĂ©tlĂ©st ĂĄllĂ­tottunk be ismĂ©tlĂ©senkĂ©nt 6-6 növĂ©nnyel. A vizsgĂĄlt morfolĂłgiai paramĂ©terek: a növĂ©ny teljes hossza, levelek szĂĄma, a legfejlettebb levĂ©l levĂ©llemez hosszĂșsĂĄga Ă©s szĂ©lessĂ©ge, a szĂĄrĂĄtmĂ©rƑ, illetve a föld feletti növĂ©nyi rĂ©szek tömege.MegĂĄllapĂ­tottuk, hogy 10 %-os szennyvĂ­zĂŒledĂ©k kijuttatĂĄs hatĂĄsĂĄra a növĂ©nyek föld feletti vegetatĂ­v rĂ©szei a kontrollhoz hasonlĂłan fejlƑdtek. A kezelt növĂ©nyek fejlƑdĂ©sben, növekedĂ©sben, a levelek szĂĄmĂĄban Ă©s a levĂ©llemez mĂ©retĂ©ben nem maradtak el a kontrolltĂłl. 10%-os szennyezĂ©s esetĂ©n a föld feletti vegetatĂ­v tömeg meghaladta a kontrollnĂĄl mĂ©rt Ă©rtĂ©keket. A 20 % szennyvĂ­zĂŒledĂ©kkel kezelt növĂ©nyeknĂ©l az elƑzƑhöz hasonlĂł eredmĂ©nyeket kaptunk. A növĂ©nyek teljes hossza, levĂ©lszĂĄma Ă©s levĂ©lparamĂ©terei a kontrolltĂłl Ă©rdemben nem tĂ©rtek el, sƑt a növĂ©ny tömege ebben az esetben is nƑtt a kezelĂ©s hatĂĄsĂĄra. MegĂĄllapĂ­thatĂł tehĂĄt, hogy a kismĂ©rtĂ©kƱ szennyvĂ­zĂŒledĂ©k-terhelĂ©s nem volt negatĂ­v hatĂĄssal a szudĂĄnifƱ morfolĂłgiai paramĂ©tereire. FeltĂ©telezhetƑen a szennyvĂ­zĂŒledĂ©k jelentƑs tĂĄpelem-tartalma ellensĂșlyozta a vele egyĂŒtt kijuttatott nehĂ©zfĂ©mek toxikus hatĂĄsĂĄt
    corecore