25 research outputs found

    Grazing incidence x ray fluorescence analysis for non destructive determination of In and Ga depth profiles in Cu In,Ga Se2 absorber films

    Get PDF
    Development of highly efficient thin film solar cells involves band gap engineering by tuning their elemental composition with depth. Here we show that grazing incidence X ray fluorescence GIXRF analysis using monochromatic synchrotron radiation and well characterized instrumentation is suitable for a non destructive and reference free analysis of compositional depth profiles in thin films. Variation of the incidence angle provides quantitative access to the in depth distribution of the elements, which are retrieved from measured fluorescence intensities by modeling parameterized gradients and fitting calculated to measured fluorescence intensities. Our results show that double Ga gradients in Cu In1 x,Gax Se2 can be resolved by GIXR

    Theoretical and experimental determination of LL-shell decay rates, line widths, and fluorescence yields in Ge

    Get PDF
    Fluorescence yields (FYs) for the Ge L shell were determined by a theoretical and two experimental groups within the framework of the International Initiative on X-Ray Fundamental Parameters Collaboration. Calculations were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental value of the L3FYωL3 was determined at the Physikalisch-Technische Bundesanstalt undulator beamline of the synchrotron radiation facility BESSY II in Berlin, Germany, and the Lα1,2 and Lβ1 line widths were measured at the Swiss Light Source, Paul Scherrer Institute, Switzerland, using monochromatized synchrotron radiation and a von Hamos x-ray crystal spectrometer. The measured fluorescence yields and line widths are compared to the corresponding calculated values

    Experimental determination of line energies, line widths and relative transition probabilities of the Gadolinium L x ray emission spectrum

    No full text
    In this work the most intense x ray lines of the L emission spectrum of gadolinium with respect to line energies, natural line widths, and relative transition probabilities were investigated using monochromatized synchrotron radiation. The measurements were realized in the PTB laboratory at BESSY II by means of an in house built von Hamos spectrometer based on up to two full cylinder HAPG mosaic crystals. The von Hamos spectrometer is calibrated by means of elastically scattered photons from the employed synchrotron radiation beamline leading to a well defined energy scale and an experimentally determined spectrometer response. A selective excitation of the gadolinium L subshells was carried out to ensure a robust deconvolution of neighboring emission lines of different L subshells. The experimental results are discussed in the context of existing data from common databases and published values since significant deviations, especially for the L and L emission lines, are observed. We further substantiate and discuss two satellite lines at the low energy side of the L and L emission lines arising from the N4,5 subshel

    High accuracy experimental determination of copper and zinc mass attenuation coefficients in the 100 eV to 30 keV photon energy range

    No full text
    International audienceThe knowledge of atomic fundamental parameters such as mass attenuation coefficients with low uncertainties, is of decisive importance in elemental quantification using x-ray fluorescence analysis techniques. Several databases are accessible and frequently used within a large community of users. These compilations are most often in good agreement for photon energies in the hard x-ray ranges. However, they significantly differ for low photon energies and around the absorption edges of any element. In a joint cooperation of the metrology institutes of France and Germany, mass attenuation coefficients of copper and zinc were determined experimentally in the photon energy range from 100 eV to 30 keV by independent approaches using monochromatized synchrotron radiation at SOLEIL (France) and BESSY II (Germany), respectively. The application of high-accuracy experimental techniques resulted in mass attenuation coefficient datasets determined with low uncertainties that are directly compared to existing databases. The novel datasets are expected to enhance the reliability of mass attenuation coefficients
    corecore