13 research outputs found

    Sex differences in the impact of ozone on survival and alveolar macrophage function of mice after Klebsiella pneumoniae infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sex differences have been described in a number of pulmonary diseases. However, the impact of ozone exposure followed by pneumonia infection on sex-related survival and macrophage function have not been reported. The purpose of this study was to determine whether ozone exposure differentially affects: 1) survival of male and female mice infected with <it>Klebsiella pneumoniae</it>, and 2) the phagocytic ability of macrophages from these mice.</p> <p>Methods</p> <p>Male and female C57BL/6 mice were exposed to O<sub>3 </sub>or to filtered air (FA) (control) and then infected intratracheally with <it>K. pneumoniae </it>bacteria. Survival was monitored over a 14-day period, and the ability of alveolar macrophages to phagocytize the pathogen <it>in vivo </it>was investigated after 1 h.</p> <p>Results</p> <p>1) Both male and female mice exposed to O<sub>3 </sub>are significantly more susceptible to <it>K. pneumoniae </it>infection than mice treated with FA; 2) although females appeared to be more resistant to <it>K. pneumoniae </it>than males, O<sub>3 </sub>exposure significantly increased the susceptibility of females to <it>K. pneumoniae </it>infection to a greater degree than males; 3) alveolar macrophages from O<sub>3</sub>-exposed male and female mice have impaired phagocytic ability compared to macrophages from FA-exposed mice; and 4) the O<sub>3</sub>-dependent reduction in phagocytic ability is greater in female mice.</p> <p>Conclusion</p> <p>O<sub>3 </sub>exposure reduces the ability of mice to survive <it>K. pneumoniae </it>infection and the reduced phagocytic ability of alveolar macrophages may be one of the contributing factors. Both events are significantly more pronounced in female mice following exposure to the environmental pollutant, ozone.</p

    Multi-Modal Proteomic Analysis of Retinal Protein Expression Alterations in a Rat Model of Diabetic Retinopathy

    Get PDF
    As a leading cause of adult blindness, diabetic retinopathy is a prevalent and profound complication of diabetes. We have previously reported duration-dependent changes in retinal vascular permeability, apoptosis, and mRNA expression with diabetes in a rat model system. The aim of this study was to identify retinal proteomic alterations associated with functional dysregulation of the diabetic retina to better understand diabetic retinopathy pathogenesis and that could be used as surrogate endpoints in preclinical drug testing studies.A multi-modal proteomic approach of antibody (Luminex)-, electrophoresis (DIGE)-, and LC-MS (iTRAQ)-based quantitation methods was used to maximize coverage of the retinal proteome. Transcriptomic profiling through microarray analysis was included to identify additional targets and assess potential regulation of protein expression changes at the mRNA level. The proteomic approaches proved complementary, with limited overlap in proteomic coverage. Alterations in pro-inflammatory, signaling and crystallin family proteins were confirmed by orthogonal methods in multiple independent animal cohorts. In an independent experiment, insulin replacement therapy normalized the expression of some proteins (Dbi, Anxa5) while other proteins (Cp, Cryba3, Lgals3, Stat3) were only partially normalized and Fgf2 and Crybb2 expression remained elevated.These results expand the understanding of the changes in retinal protein expression occurring with diabetes and their responsiveness to normalization of blood glucose through insulin therapy. These proteins, especially those not normalized by insulin therapy, may also be useful in preclinical drug development studies

    Surfactant protein-A levels in interstitial lung disease

    No full text

    Surfactant protein A and B genetic variants predispose to idiopathic pulmonary fibrosis

    No full text
    Derangement in pulmonary surfactant or its components and alveolar collapse are common findings in idiopathic pulmonary fibrosis (IPF). Surfactant proteins play important roles in innate host defense and normal function of the lung. We examined associations between IPF and genetic polymorphic variants of surfactant proteins, SP-A1, SP-A2, SP-B, SP-C, and SP-D. One SP-A1 (6A(4)) allele and single nucleotide polymorphisms (SNPs) that characterize the 6A(4) allele, and one SP-B (B1580_C) were found with higher frequency (Pless than or equal to0.01) in nonsmoker and smoker IPF (n=84) subgroups, respectively, compared with healthy controls (n=194). To explore whether a tryptophan (present in 6A(4)) or an arginine (present in other SP-A1 alleles and in all SP-A2 alleles) at amino acid 219 alters protein behavior, two truncated proteins that varied only at amino acid 219 were oxidized by exposure to ozone. Differences in the absorption spectra (310-350 nm) between the two truncated recombinant SP-A proteins were observed both before and after protein oxidation, suggesting allele-specific aggregation differences attributable to amino acid 219. The SP-B SNP B1580_C (odds ratio:7.6

    No association between coding polymorphism within Exon 4 of the human surfactant protein B gene and pulmonary function in healthy men

    No full text
    The coding polymorphism (rs1130866) within the surfactant protein B gene is known to associate with certain respiratory abnormalities. We investigated, using spirometry and fluorescence-based PCR, whether this variant influenced pulmonary function in healthy, nonsmoking men. We found no association of pulmonary function with genotype at the rs1130866 locus
    corecore