1,945 research outputs found

    Landau level mixing by full spin-orbit interactions

    Full text link
    We study a two-dimensional electron gas in a perpendicular magnetic field in the presence of both Rashba and Dresselhaus spin-orbit interactions. Using a Bogoliubov transformation we are able to write an approximate formula for the Landau levels, thanks to the simpler form of the resulting Hamiltonian. The exact numerical calculation of the energy levels, is also made simpler by our formulation. The approximate formula and the exact numerical results show excellent agreement for typical semiconductors, especially at high magnetic fields. We also show how effective Zeeman coupling is modified by spin-orbit interactions.Comment: 5 pages, 5 figure

    Nonlocal Spin Transport as a Probe of Viscous Magnon Fluids

    Get PDF
    Magnons in ferromagnets behave as a viscous fluid over a length scale, the momentum-relaxation length, below which momentum-conserving scattering processes dominate. We show theoretically that in this hydrodynamic regime viscous effects lead to a sign change in the magnon chemical potential, which can be detected as a sign change in the nonlocal resistance measured in spin transport experiments. This sign change is observable when the injector-detector distance becomes comparable to the momentum-relaxation length. Taking into account momentum- and spin-relaxation processes, we consider the quasiconservation laws for momentum and spin in a magnon fluid. The resulting equations are solved for nonlocal spin transport devices in which spin is injected and detected via metallic leads. Because of the finite viscosity we also find a backflow of magnons close to the injector lead. Our work shows that nonlocal magnon spin transport devices are an attractive platform to develop and study magnon-fluid dynamics

    Search for the Higgs Boson H20H_2^0 at LHC in 3-3-1 Model

    Full text link
    We present an analysis of production and signature of neutral Higgs boson (H20H_{2}^{0}) on the version of the 3-3-1 model containing heavy leptons at the Large Hadron Collider. We studied the possibility to identify it using the respective branching ratios. Cross section are given for the collider energy, s=\sqrt{s} = 14 TeV. Event rates and significances are discussed for two possible values of integrated luminosity, 300 fb−1^{-1} and 3000 fb−1^{-1}.Comment: 17 pages 7 figures. arXiv admin note: substantial text overlap with arXiv:1205.404

    Spatial correlations in chaotic nanoscale systems with spin-orbit coupling

    Full text link
    We investigate the statistical properties of wave functions in chaotic nanostructures with spin-orbit coupling (SOC), focussing in particular on spatial correlations of eigenfunctions. Numerical results from a microscopic model are compared with results from random matrix theory in the crossover from the gaussian orthogonal to the gaussian symplectic ensembles (with increasing SOC); one- and two-point distribution functions were computed to understand the properties of eigenfunctions in this crossover. It is found that correlations of wave function amplitudes are suppressed with SOC; nevertheless, eigenfunction correlations play a more important role in the two-point distribution function(s), compared to the case with vanishing SOC. Experimental consequences of our results are discussed.Comment: Submitted to PR

    Human Identities and Nation Building: Comparative Analysis, Markets, and the Modern University

    Get PDF
    The purpose of this article is to discuss the dilemma of the multi-university in sustainable education, research, and outreach by addressing some of the ways in which universities, must generate actions that seek to address these challenges, develop strategic relationships, and maximize their potential in the areas of teaching, research and service to society. Significantly, we examine how sustainability is experienced by nations—in our case Mexico—by analyzing higher education and its mission in developing citizens and economic sovereignty. The author’s goal is to establish a new paradigm by which practitioners and researchers can collaborate to produce the ideas that stimulate sustainable development

    Coulomb interaction effects on the electronic structure of radial polarized excitons in nanorings

    Full text link
    The electronic structure of radially polarized excitons in structured nanorings is analyzed, with emphasis in the ground-state properties and their dependence under applied magnetic fields perpendicular to the ring plane. The electron-hole Coulomb attraction has been treated rigorously, through numerical diagonalization of the full exciton Hamiltonian in the non-interacting electron-hole pairs basis. Depending on the relative weight of the kinetic energy and Coulomb contributions, the ground-state of polarized excitons has "extended" or "localized" features. In the first case, corresponding to small rings dominated by the kinetic energy, the ground-state shows Aharonov-Bohm (AB) oscillations due to the individual orbits of the building particles of the exciton. In the localized regime, corresponding to large rings dominated by the Coulomb interaction, the only remaining AB oscillations are due to the magnetic flux trapped between the electron and hole orbits. This dependence of the exciton, a neutral excitation, on the flux difference confirms this feature as a signature of Coulomb dominated polarized excitons. Analytical approximations are provided in both regimens, which accurate reproduce the numerical results.Comment: 9 pages, including 6 figure

    Tuning hole mobility in InP nanowires

    Get PDF
    Transport properties of holes in InP nanowires were calculated considering electron-phonon interaction via deformation potentials, the effect of temperature and strain fields. Using molecular dynamics, we simulate nanowire structures, LO-phonon energy renormalization and lifetime. The valence band ground state changes between light- and heavy-hole character, as the strain fields and the nanowire size are changed. Drastic changes in the mobility arise with the onset of resonance between the LO-phonons and the separation between valence subbands.Comment: 4 pages, 4 figure
    • …
    corecore