75 research outputs found

    Angiotensin signalling in pulmonary fibrosis

    Get PDF
    A large body of evidence demonstrates that angiotensin II and angiotensin receptors are required for the pathogenesis of experimental lung fibrosis. Angiotensin has a number of profibrotic effects on lung parenchymal cells that include the induction of growth factors for mesenchymal cells, extracellular matrix molecules, cytokines and increased motility of lung fibroblasts. Angiotensin is also proapoptotic for lung epithelial cells, and is synthesized by a local system (i.e., entirely within the lung tissue) after lung injury by a variety of agents of both xenobiotic and endogenous origins. Recent evidence shows that the counter-regulatory molecule angiotensin 1-7, the product of the enzyme ACE-2, inhibits epithelial cell apoptosis and thus acts as an antifibrotic epithelial survival factor. This manuscript reviews the evidence supporting a role for angiotensin in lung fibrogenesis and discusses the signalling mechanisms underlying its action on lung parenchymal cells important in the pathogenesis of pulmonary fibrosis. (C) 2011 Elsevier Ltd. All rights reserved

    Angiotensinogen Gene Transcription in Pulmonary Fibrosis

    Get PDF
    An established body of literature supports the hypothesis that activation of a local tissue angiotensin (ANG) system in the extravascular tissue compartment of the lungs is required for lung fibrogenesis. Transcriptional activation of the angiotensinogen (AGT) gene is believed to be a critical and necessary step in this activation. This paper summarizes the data in support of this theory and discusses transcriptional regulation of AGT, with an emphasis on lung AGT synthesis as a determinant of fibrosis severity. Genetic data linking AGT polymorphisms to the severity of disease in Idiopathic Pulmonary Fibrosis are also discussed

    Fas induces apoptosis in human coronary artery endothelial cells in vitro

    Get PDF
    BACKGROUND: Published work suggests that some types of endothelial cells undergo apoptosis in response to ligation of the receptor Fas (CD95, APO1) but other types are resistant. Because heterogeneity among endothelial cells from different tissues, has been demonstrated, the purpose of this study was to determine, if Fas ligation and/or activation by human Fas ligand induces apoptosis and caspase activities, in cultured human coronary artery endothelial cells, and the differences between TNF-a and FAS induced apoptosis in these cells. RESULTS: Cultured human coronary artery endothelial cells (HCAEC) were exposed to the monoclonal Fas-activating antibody CH-11, to purified recombinant human Fas ligand, to the Fas-neutralizing antibody ZB4, or to purified recombinant human TNF-α. Apoptosis was detected by assessment of chromatin condensation and nuclear fragmentation and by assay of the enzymatic activities of Caspase 1 and Caspase 3 with membrane-permeable substrates applied to intact cells. Fas protein was detected by immunoblotting of HCAEC lysates. Apoptosis was induced in HCAEC by purified Fas ligand or by the monoclonal activating antibody CH-11 at concentrations of 25 or 200 ng/ml, but not by nonspecific isotype-matched immunoglobulins. The apoptotic index elicited by either Fas activator was equal to that induced by TNF-a (3.0-3.6-fold versus control, p < 0.01). The Fas-neutralizing antibody ZB4 abrogated HCAEC apoptosis induced by CH-11, but had no inhibitory effect on apoptosis in response to TNF-a. Fas ligation significantly increased the activities of both Caspase 1 and Caspase 3 at 20 hours of stimulation (1.7- and 2.0-fold versus control, both p < 0.05); in contrast, purified TNF-a increased the activity of Caspase 3 but not Caspase 1 (2.1-fold, p < 0.05). Western blotting of HCAEC lysates with antibody CH-11 identified a single immunoreactive protein of 90 kDa. CONCLUSIONS: Cultured human coronary artery endothelial cells express functional Fas capable of inducing apoptosis in response to either purified Fas ligand or receptor-activating monoclonal antibodies, at levels equal to those inducible by purified TNF-α. Immunologic studies and differential kinetics of caspase activation suggest that Fas and TNF-α induce apoptosis in HCAEC by signaling pathways that are distinct but equal in potency

    Design of a chimeric ACE-2/Fc-silent fusion protein with ultrahigh affinity and neutralizing capacity for SARS-CoV-2 variants

    Get PDF
    BACKGROUND: As SARS-CoV-2 continues to mutate into Variants of Concern (VOC), there is growing and urgent need to develop effective antivirals to combat COVID-19. Monoclonal antibodies developed earlier are no longer capable of effectively neutralizing currently active VOCs. This report describes the design of variant-agnostic chimeric molecules consisting of an Angiotensin-Converting Enzyme 2 (ACE-2) domain mutated to retain ultrahigh affinity binding to a wide variety of SARS-CoV-2 variants, coupled to an Fc-silent immunoglobulin domain that eliminates antibody-dependent enhancement and extends biological half-life. METHODS: Molecular modeling, Surrogate Viral Neutralization tests (sVNTs) and infection studies of human airway organoid cultures were performed with synthetic chimeras, SARS-CoV-2 spike protein mimics and SARS-CoV-2 Omicron variants B.1.1.214, BA.1, BA.2 and BA.5. RESULTS: ACE-2 mutations L27, V34 and E90 resulted in ultrahigh affinity binding of the LVE-ACE-2 domain to the widest variety of VOCs, with KDs of 93 pM and 73 pM for binding to the Alpha B1.1.7 and Omicron B.1.1.529 variants, and notably, 78fM, 133fM and 1.81pM affinities to the Omicron BA.2, BA2.75 and BQ.1.1 subvariants, respectively. sVNT assays revealed titers of ≥4.9 ng/ml, for neutralization of recombinant viral proteins corresponding to the Alpha, Delta and Omicron variants. The values above were obtained with LVE-ACE-2/mAB chimeras containing the FcRn-binding Y-T-E sequence which extends biological half-life 3-4-fold. CONCLUSIONS: The ACE-2-mutant/Fc silent fusion proteins described have ultrahigh affinity to a wide variety of SARS-CoV-2 variants including Omicron. It is proposed that these chimeric ACE-2/mABs will constitute variant-agnostic and cost-effective prophylactics against SARS-CoV-2, particularly when administered nasally

    SARS‐CoV‐2 research using human pluripotent stem cells and organoids

    Get PDF
    Experimental cell models are indispensable for clarifying the pathophysiology of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and for developing therapeutic agents. To recapitulate the symptoms and drug response of COVID-19 patients in vitro, SARS-CoV-2 studies using physiologically relevant human embryonic stem (ES)/induced pluripotent stem (iPS) cell-derived somatic cells and organoids are ongoing. These cells and organoids have been used to show that SARS-CoV-2 can infect and damage various organs including the lung, heart, brain, intestinal tract, kidney, and pancreas. They are also being used to develop COVID-19 therapeutic agents, including evaluation of their antiviral efficacy and safety. The relationship between COVID-19 aggravation and human genetic backgrounds has been investigated using genetically modified ES/iPS cells and patient-derived iPS cells. This review summarizes the latest results and issues of SARS-CoV-2 research using human ES/iPS cell-derived somatic cells and organoids

    Angiotensinogen Promoter Polymorphisms Predict Low Diffusing Capacity in U.S. and Spanish IPF Cohorts

    Get PDF
    Single nucleotide polymorphisms (SNPs) in angiotensinogen (AGT) at positions -20 and -6 are associated with increased severity and progression of various fibrotic diseases. Our earlier work demonstrated that the progression of idiopathic pulmonary fibrosis (IPF) was associated with the A-6 allele. This study examined the hypothesis that the homozygous CC genotype at -20 and the AA genotype at -6 would confer worse measures of pulmonary function (measured by pulmonary function tests) in IPF. Multiple logistic regression analysis was applied to a NIH Lung Tissue Research Consortium cohort and a Spanish cohort, while also adjusting for covariates to determine the effects of these SNPs on measures of pulmonary function. Analysis demonstrated that the CC genotype at -20 was strongly associated with reduced diffusing capacity in males in both cohorts (p = 0.0028 for LTRC and p = 0.017 for the Spanish cohort). In females, the AA genotype was significantly associated with lower FVC (p = 0.0082) and V (alv) (p = 0.022). In males, the haplotype CA at -20 and -6 in AGT was also strongly associated with reduced diffusing capacity in both cohorts. This study is the first to demonstrate an association of AGT polymorphisms (-20A > C and -6G > A) with lower measures of pulmonary function in IPF. It is also the first to relate the effect of gender in lung fibrosis with polymorphisms in AGT

    Would New SARS-CoV-2 Variants Change the War against COVID-19?

    Get PDF
    The scientific, private, and industrial sectors use a wide variety of technological platforms available to achieve protection against SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), including vaccines. However, the virus evolves continually into new highly virulent variants, which might overcome the protection provided by vaccines and may re-expose the population to infections. Mass vaccinations should be continued in combination with more or less mandatory non-pharmaceutical interventions. Therefore, the key questions to be answered are: (i) How to identify the primary and secondary infections of SARS-CoV-2? (ii) Why are neutralizing antibodies not long-lasting in both cases of natural infections and post-vaccinations? (iii) Which are the factors responsible for this decay in neutralizing antibodies? (iv) What strategy could be adapted to develop long-term herd immunity? (v) Is the Spike protein the only vaccine target or is a vaccine cocktail better

    The Importance of Research on the Origin of SARS-CoV-2

    Get PDF
    The origin of the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) virus causing the COVID-19 pandemic has not yet been fully determined. Despite the consensus about the SARS-CoV-2 origin from bat CoV RaTG13, discrepancy to host tropism to other human Coronaviruses exist. SARS-CoV-2 also possesses some differences in its S protein receptor-binding domain, glycan-binding N-terminal domain and the surface of the sialic acid-binding domain. Despite similarities based on cryo-EM and biochemical studies, the SARS-CoV-2 shows higher stability and binding affinity to the ACE2 receptor. The SARS-CoV-2 does not appear to present a mutational “hot spot” as only the D614G mutation has been identified from clinical isolates. As laboratory manipulation is highly unlikely for the origin of SARS-CoV-2, the current possibilities comprise either natural selection in animal host before zoonotic transfer or natural selection in humans following zoonotic transfer. In the former case, despite SARS-CoV-2 and bat RaTG13 showing 96% identity some pangolin Coronaviruses exhibit very high similarity to particularly the receptor-binding domain of SARS-CoV-2. In the latter case, it can be hypothesized that the SARS-CoV-2 genome has adapted during human-to-human transmission and based on available data, the isolated SARS-CoV-2 genomes derive from a common origin. Before the origin of SARS-CoV-2 can be confirmed additional research is required
    corecore