6,234 research outputs found
Recommended from our members
A One Health Approach to Hypertrophic Cardiomyopathy.
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease in humans and results in significant morbidity and mortality. Research over the past 25 years has contributed enormous insight into this inherited disease particularly in the areas of genetics, molecular mechanisms, and pathophysiology. Our understanding continues to be limited by the heterogeneity of clinical presentations with various genetic mutations associated with HCM. Transgenic mouse models have been utilized especially studying the genotypic and phenotypic interactions. However, mice possess intrinsic cardiac and hemodynamic differences compared to humans and have limitations preventing their direct translation. Other animal models of HCM have been studied or generated in part to overcome these limitations. HCM in cats shows strikingly similar molecular, histopathological, and genetic similarities to human HCM, and offers an important translational opportunity for the study of this disease. Recently, inherited left ventricular hypertrophy in rhesus macaques was identified and collaborative investigations have been conducted to begin to develop a non-human primate HCM model. These naturally-occurring large-animal models may aid in advancing our understanding of HCM and developing novel therapeutic approaches to this disease. This review will highlight the features of HCM in humans and the relevant available and developing animal models of this condition
Magnetic properties of Fe/Cu multilayers prepared using pulsed-current electrodeposition
[Fe (tFe) nm/Cu (tCu) nm]N multilayer films were prepared using pulsed-current electrodeposition method. The role of the pulsed-current deposition and Fe and Cu layer thicknesses on the magnetic properties was investigated. The microstructure of the multilayer films is dependent on the thicknesses of both the Fe and Cu layers. The saturation magnetization of the multilayers strongly correlated with the crystalline structure of Fe at the interface of Fe and Cu layers.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2488
Finite-Size Scaling Analysis of the Eigenstate Thermalization Hypothesis in a One-Dimensional Interacting Bose gas
By calculating correlation functions for the Lieb-Liniger model based on the
algebraic Bethe ansatz method, we conduct a finite-size scaling analysis of the
eigenstate thermalization hypothesis (ETH) which is considered to be a possible
mechanism of thermalization in isolated quantum systems. We find that the ETH
in the weak sense holds in the thermodynamic limit even for an integrable
system although it does not hold in the strong sense. Based on the result of
the finite-size scaling analysis, we compare the contribution of the weak ETH
to thermalization with that of yet another thermalization mechanism, the
typicality, and show that the former gives only a logarithmic correction to the
latter.Comment: 5 pages, 3 figure
- …