74 research outputs found

    Structure and Hydrogen Bonding in CaSiD\u3csub\u3e1+ \u3cem\u3ex\u3c/em\u3e\u3c/sub\u3e: Issues About Covalent Bonding

    Get PDF
    We report here our high-resolution neutron powder diffraction and neutron vibrational spectroscopy study of CaSiD1+x along with first-principles calculations, which reveal the deuterium structural arrangements and bonding in this novel alloy hydride. Both the structural and spectroscopic results show that, for x \u3e 0, D atoms start occupying a Ca3Si interstitial site. The corresponding Si-D bond length is determined to be 1.82 Ã…, fully 0.24 Ã… larger than predicted by theory. Thus, our neutron measurements are at odds with the strongly covalent Si-H bonding in CaSiH1+x that such calculations suggest, a result which may have implications for a number of ongoing studies of metal-hydrogen systems destabilized by Si alloying

    Nuclear Magnetic Resonance Evidence of Disorder and Motion in Yttrium Trideuteride

    Get PDF
    Three samples of YDx, with x ranging from 2.9 to nearly 3.0, were studied with deuterium nuclear magnetic resonance to gain insight into the locations of the D atoms in the lattice and their motions. Line shapes at low temperatures (200–330 K) show substantial disorder at some of the deuterium sites. Near 355 K, the spectrum sharpens to yield three uniaxial Pake patterns, reflecting a motional averaging process. However, the three measured intensities do not match the ratios expected from the neutron-determined, HoD3-like structure. This is strong evidence that the structure and space group of YD3 are different than reported, or that the current model needs adjustment. At still higher temperatures near 400 K, the Pake doublet features broaden, and a single sharp resonance develops, signalling a diffusive motion that carries all D atoms over all sites. The temperature at which line shape changes occur depends on the number of deuterium vacancies, 3-x. The changes occur at lower temperatures in the most defective sample, indicating the role of D-atom vacancies in the motional processes. The longitudinal relaxation rate T1-1 displays two regimes, being nearly temperature independent below 300 K and strongly thermally activated above. The relaxation rate depends on the number of deuterium vacancies, 3-x, varying an order of magnitude over the range of stoichiometries studied and suggesting that D-atom diffusion is involved. Also, the activation energy describing T1-1 (kB×5500 K) approximately matches that for diffusion. An unusual ω0-0.7 frequency dependence of T1-1 is observed. A relaxation mechanism is proposed in which diffusion is the rate-determining step and in which frequency dependence arises from a field-dependent radius of the relaxation zones

    Structure and Interstitial Deuterium site of ß-phase ZrNi Deuteride

    Get PDF
    ß-ZrNiD1-x (for x≈0.1, near the ß-γ phase boundary) was found to possess a triclinic P1(overline) structure as determined by high-resolution neutron power diffraction. This is very different from the widely accepted orthohombic and distorted orthorhombic Cmcm structures previously proposed. In contrast to the single type of D site associated with these latter structures, the true ß-ZrNiD1-x structure contains two crystallographically distinct interstitial D sites: Zr4Ni2 octahedral sites and Zr4 tetrahedral sites, alternately ordered along the a direction. From first-principles calculations, the total energy of the P1(overline) structure was found to be ≈0.24 eV per unit cell lower than Cmcm-symmetry ZrNiD and could be rationalized in terms of different D local-bonding configurations and metal-deuterium interactions. Resultant phonon calculations based on this structure were also consistnet with the measured neutron vibrational spectrum

    Crystal structure of Li_2B_(12)H_(12): a possible intermediate species in the decomposition of LiBH_4

    Get PDF
    The crystal structure of solvent-free Li_2B_(12)H_(12) has been determined by powder X-ray diffraction and confirmed by a combination of neutron vibrational spectroscopy and first-principles calculations. This compound is a possible intermediate in the dehydrogenation of LiBH_4, and its structural characterization is crucial for understanding the decomposition and regeneration of LiBH_4. Our results reveal that the structure of Li_2B_(12)H_(12) differs from other known alkali-metal (K, Rb, and Cs) derivatives

    Interplay of NH4+ and BH4- reorientational dynamics in NH4BH4

    Get PDF
    The reorientational dynamics of ammonium borohydride (NH4BH4) was studied using quasielastic neutron scattering in the temperature interval from 10 to 240 K, which covers both the dynamically ordered and disordered polymorphs of NH4BH4. In the low-temperature (50 K) ordered polymorph of NH4BH4, analysis of the quasielastic neutron scattering data reveals that no reorientational dynamics is present within the probed timescale region of 0.1 to 100 ps. In the high-temperature (50 K) disordered polymorph, the analysis establishes the onset of NH4+ and BH4- dynamics at around 50 and 125 K, respectively. The relaxation time at 150 K for NH4+ is approximately 1 ps, while around 100 ps for BH4- . The NH4+ dynamics at temperatures below 125 K is associated with preferential tetrahedral tumbling motions, where each of the hydrogen atoms in the NH4+ tetrahedron can visit any of the four hydrogen sites, however, reorientations around a specific axis are more frequently occurring (C-2 or C3). At higher temperatures, the analysis does not exclude a possible evolution of the NH4+ dynamics from tetrahedral tumbling to either cubic tumbling, where the hydrogen atoms can visit any of the eight positions corresponding to the corners of a cube, or isotropic rotational diffusion, where the hydrogen atoms can visit any location on the surface of a sphere. The BH4- dynamics can be described as cubic tumbling. The difference in reorientational dynamics between the two ions is related to the difference of the local environment where the dynamically much slower BH4- anion imposes a noncubic environment on the NH4+ cation

    Neutron Vibrational Spectroscopy and First-Principles Calculations of the Ternary Hydrides Li\u3csub\u3e4\u3c/sub\u3eSi\u3csub\u3e2\u3c/sub\u3eH(D) and Li\u3csub\u3e4\u3c/sub\u3eGe\u3csub\u3e2\u3c/sub\u3eH(D): Electronic Structure and Lattice Dynamics

    Get PDF
    Using combined neutron spectroscopy and first-principles calculations, we investigated the electronic structure and vibrational dynamics of the recently discovered class of ternary hydrides Li4Tt2H (Tt=Si and Ge). In these compounds, all hydrogen atoms are located in a single type of Li6-defined octahedral site. The Tt atoms form long-range Tt-Tt chains sandwiched between each Li6-octahedra layer. The Li-H interactions are strongly ionic, with bond lengths comparable to those in LiH. Our density functional theory calculations indicate that Li atoms transfer their electrons to both H and Tt atoms. Tt atoms within the Tt-Tt chain are bonded covalently. The electronic density of states reveals that both hydrides exhibit metallic behavior. The observed vibrational spectra of these hydrides are in good overall agreement with the calculated phonon modes. There is evidence of dispersion induced splitting in the optical phonon peaks that can be ascribed to the coupling of H vibrations within the Li6-octahedra layers

    Probing the unusual anion mobility of LiBH_4 confined in highly ordered nanoporous carbon frameworks via solid state NMR and quasielastic neutron scattering

    Get PDF
    Particle size and particle–framework interactions have profound effects on the kinetics, reaction pathways, and even thermodynamics of complex hydrides incorporated in frameworks possessing nanoscale features. Tuning these properties may hold the key to the utilization of complex hydrides in practical applications for hydrogen storage. Using carefully synthesized, highly-ordered, nanoporous carbons (NPCs), we have previously shown quantitative differences in the kinetics and reaction pathways of LiBH_4 when incorporated into the frameworks. In this paper, we probe the anion mobility of LiBH_4 confined in NPC frameworks by a combination of solid state NMR and quasielastic neutron scattering (QENS) and present some new insights into the nanoconfinement effect. NMR and QENS spectra of LiBH_4 confined in a 4 nm pore NPC suggest that the BH_4− anions nearer the LiBH_4–carbon pore interface exhibit much more rapid translational and reorientational motions compared to those in the LiBH_4 interior. Moreover, an overly broadened BH_4− torsional vibration band reveals a disorder-induced array of BH_4− rotational potentials. XRD results are consistent with a lack of LiBH_4 long-range order in the pores. Consistent with differential scanning calorimetry measurements, neither NMR nor QENS detects a clear solid–solid phase transition as observed in the bulk, indicating that borohydride–framework interactions and/or nanosize effects have large roles in confined LiBH_4

    Promoting Persistent Superionic Conductivity in Sodium Monocarba-closo-dodecaborate NaCB11H12 via Confinement within Nanoporous Silica

    Get PDF
    Superionic phases of bulk anhydrous salts based on large cluster-like polyhedral (carba)borate anions are generally stable only well above room temperature, rendering them unsuitable as solid-state electrolytes in energy-storage devices that typically operate at close to room temperature. To unlock their technological potential, strategies are needed to stabilize these superionic properties down to subambient temperatures. One such strategy involves altering the bulk properties by confinement within nanoporous insulators. In the current study, the unique structural and ion dynamical properties of an exemplary salt, NaCB11H12, nanodispersed within porous, high-surface-area silica via salt-solution infiltration were studied by differential scanning calorimetry, X-ray powder diffraction, neutron vibrational spectroscopy, nuclear magnetic resonance, quasielastic neutron scattering, and impedance spectroscopy. Combined results hint at the formation of a nanoconfined phase that is reminiscent of the high-temperature superionic phase of bulk NaCB11H12, with dynamically disordered CB11H12-anions exhibiting liquid-like reorientational mobilities. However, in contrast to this high-temperature bulk phase, the nanoconfined NaCB11H12 phase with rotationally fluid anions persists down to cryogenic temperatures. Moreover, the high anion mobilities promoted fast-cation diffusion, yielding Na+ superionic conductivities of similar to 0.3 mS/cm at room temperature, with higher values likely attainable via future optimization. It is expected that this successful strategy for conductivity enhancement could be applied as well to other related polyhedral (carba)borate-based salts. Thus, these results present a new route to effectively utilize these types of superionic salts as solid-state electrolytes in future battery applications
    • …
    corecore