27 research outputs found

    Classifying structural alterations of the cytoskeleton by spectrum enhancement and descriptor fusion.

    Get PDF
    A classifier capable of ranking structural alterations of the cytoskeleton is developed. Images of cytoskeletal microtubules obtained from the epifluorescence microscopy of primary culture rat hepatocytes are analyzed. Morphological descriptors are extracted by contour and mass fractal analysis, direct methods, and spectrum enhancement. All methods are designed and tuned to make the extracted morphological descriptors insensitive to absolute fluorescence intensities. Spectrum enhancement is a nonlinear filter that involves spatial differentiation of the gray-scale image followed by conversion of power spectral density to the logarithmic scale and averaging over arcs in the reciprocal domain. Enhanced spectra exhibit local maxima that correspond to the structured microtubule bundles of a normal cytoskeleton. Descriptor fusion for classification is achieved by means of multivariate analysis. The classifier is trained by image sets representing normal ("negative control") microtubules and those altered by exposure to a fungicide at the highest dose of the experiment design. Some sensitivity and validation tests, including discriminant functions analysis, are applied to the classifier. The latter is applied to recognize images of microtubules not used in the training stage and comes from treatments at lower concentrations and shorter times. As a result, structural alterations are ranked and structural recovery after treatment is quantified. The method has potential use in quantitative, morphology-based tests on the cytoskeleton treated either by anticancer drugs or by cytotoxic agents

    AUTOPHAGY OF METALLOTHIONEINS PREVENTS TNF-INDUCED OXIDATIVE STRESS AND TOXICITY IN HEPATOMA CELLS

    Get PDF
    Lysosomal membrane permeabilization (LMP) induced by oxidative stress has recently emerged as a prominent mechanism behind TNF cytotoxicity. This pathway relies on diffusion of hydrogen peroxide into lysosomes containing redox-active iron, accumulated by breakdown of iron-containing proteins and subcellular organelles. Upon oxidative lysosomal damage, LMP allows relocation to the cytoplasm of low mass iron and acidic hydrolases that contribute to DNA and mitochondrial damage, resulting in death by apoptosis or necrosis. Here we investigate the role of lysosomes and free iron in death of HTC cells, a rat hepatoma line, exposed to TNF following metallothionein (MT) upregulation. Iron-binding MT does not normally occur in HTC cells in significant amounts. Intracellular iron chelation attenuates TNF and cycloheximide (CHX)-induced LMP and cell death, demonstrating the critical role of this transition metal in mediating cytokine lethality. MT upregulation, combined with starvation-activated MT autophagy almost completely suppresses TNF and CHX toxicity, while impairment of both autophagy and MT upregulation by silencing of Atg7, and Mt1a and/or Mt2a, respectively, abrogates protection. Interestingly, MT upregulation by itself has little effect, while stimulated autophagy alone depresses cytokine toxicity to some degree. These results provide evidence that intralysosomal iron-catalyzed redox reactions play a key role in TNF and CHX-induced LMP and toxicity. The finding that chelation of intralysosomal iron achieved by autophagic delivery of MT, and to some degree probably of other iron-binding proteins as well, into the lysosomal compartment is highly protective provides a putative mechanism to explain autophagy-related suppression of death by TNF and CHX

    DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions

    Get PDF
    Binding-induced conformational changes of a protein at regions distant from the binding site may play crucial roles in protein function and regulation. The p53 tumour suppressor is an example of such an allosterically regulated protein. Little is known, however, about how DNA binding can affect distal sites for transcription factors. Furthermore, the molecular details of how a local perturbation is transmitted through a protein structure are generally elusive and occur on timescales hard to explore by simulations. Thus, we employed state-of-the-art enhanced sampling atomistic simulations to unveil DNA-induced effects on p53 structure and dynamics that modulate the recruitment of cofactors and the impact of phosphorylation at Ser215. We show that DNA interaction promotes a conformational change in a region 3 nm away from the DNA binding site. Specifically, binding to DNA increases the population of an occluded minor state at this distal site by more than 4-fold, whereas phosphorylation traps the protein in its major state. In the minor conformation, the interface of p53 that binds biological partners related to p53 transcription-independent functions is not accessible. Significantly, our study reveals a mechanism of DNA-mediated protection of p53 from interactions with partners involved in the p53 transcription-independent signalling. This also suggests that conformational dynamics is tightly related to p53 signalling

    Sistemi biologici in vitro come modelli per valutare l'effetto di erbicidi

    No full text
    Dottorato di ricerca in scienze naturalistiche e ambientali. 8. ciclo. A.a. 1992-95. Relatore M. Camatini. Coordinatore M. GaetaniConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Regulation of Metallothioneins and ZnT-1 Transporter Expression in Human Hepatoma Cells HepG2 Exposed to Zinc and Cadmium

    No full text
    Essential and non-essential metals can affect vital cellular processes, when over-accumulated within the cells. For this reason, cells have evolved multiple protein sensors, transporters, and other type of proteins to regulate and control free metal homeostasis. Among these, metallothioneins (MT) and ZnT-1 transporter play a key role in the regulation of free Zn concentrations. Herewith, MT expression in Zn (170 lM) and Cd (0.1 and 10 lM) exposed HepG2 cells is analyzed and compared. In addition, the modulation and localization of the membrane transporter ZnT-1 has been investigated. MT-I and MT-II were up-regulated in response to both Zn and Cd exposure and, as expected, Cd represented the most potent inducer. Namely, 0.1 lM Cd was able to up-regulate MT-I, and -II in a way comparable to 170 lM Zn. This is in agreement with MT general function of metal-chelating protein, acting with higher tolerance to essential metals than to non-essential ones. ZnT-1 protein, a plasma membrane specific Zn transporter, was up-regulated as well by both Zn and Cd, although in the same way. Immunofluorescence technique provided evidence that high levels of ZnT-1 measured by biochemical techniques, are related to an increased localization of the transporter at the plasma membrane.JRC.DDG.I.4-Molecular biology and genomic

    Nanoplastics: Status and Knowledge Gaps in the Finalization of Environmental Risk Assessments

    No full text
    Nanoplastics (NPs) are particles ranging in size between 1 and 1000 nm, and they are a form of environmental contaminant of great ecotoxicological concern. Although NPs are widespread across ecosystems, they have only recently garnered growing attention from both the scientific community and regulatory bodies. The present study reviews scientific literature related to the exposure and effects of NPs and identifies research gaps that impede the finalization of related environmental risk assessments (ERAs). Approximately 80 articles published between 2012 and 2021 were considered. Very few studies (eight articles) focused on the presence of NPs in biotic matrices, whereas the majority of the studies (62 articles) assessed the lethal and sublethal effects of NPs on aquatic and terrestrial organisms. Whilst many studies focused on nude NPs, only a few considered their association with different aggregates. Amongst NPs, the effects of polystyrene are the most extensively reported to date. Moreover, the effects of NPs on aquatic organisms are better characterized than those on terrestrial organisms. NP concentrations detected in water were close to or even higher than the sublethal levels for organisms. An ERA framework specifically tailored to NPs is proposed

    Objective scoring of transformed foci in BALB/c 3T3 cell transformation assay by statistical image descriptors

    No full text
    In vitro cell transformation assays (CTAs) have been shown to model important stages of in vivo carcinogenesis and have the potential to predict carcinogenicity in humans. Advantages of CTAs are their ability of revealing both genotoxic and non-genotoxic carcinogens while reducing both experimental costs and the number of animals used. The endpoint of the CTA is foci formation, and requires classification under light microscopy based on morphology. Thus current limitations for the wide adoption of the assay partially depend on a fair degree of subjectivity in foci scoring. An objective evaluation may be obtained after separating foci from background monolayer in the digital image, and quantifying values of statistical descriptors which are selected to capture eye-scored morphological features. The aim of this study was to develop statistical descriptors to be applied to transformed foci of BALB/c 3T3, which cover foci size, multilayering and invasive cell growth into the background monolayer. Proposed descriptors were applied to a database of 407 foci images to explore the numerical features, and to illustrate open problems and potential solutions.JRC.I.5-Systems Toxicolog

    Metallothionein and Hsp70 Expression in HepG2 cells after prolonged Cadmium Exposure

    No full text
    Cadmium is a widely distributed industrial and environmental pollutant. Principle target organs are soft tissues such as the liver, where cadmium accumulates with a biological half-life of approximately 20–30 years causing a variety of toxic responses. In HepG2, CdCl2 exposure for short periods (from 1 to 24 h) induces diVerential expression of stress proteins, including MT and hsp70. However, less is known about the stress response during a prolonged exposure to this metal. MTT assay showed a low cytotoxicity of CdCl2 (0.1, 0.5, 1, 2, 5, 10 M), over a period of 72 h. Cadmium uptake by ICP–AES technique and the corresponding expression of stress proteins (MT, hsp70) during the same prolonged time were also analysed. Results show that Cd was continuously and increasingly accumulated, at the highest of the concentrations tested. Metallothionein expression was up-regulated with a saturation curve at 48 as well as 72 h after CdCl2 exposure. High levels of MT probably confer an acquired tolerance to the stress and protection against cell injury as demonstrated by low cytotoxicity values. On the contrary, the unchanged pattern of hsp70 expression suggests that this protective mechanism, unlike other members of the family, is less involved during CdCl2 prolonged exposure.JRC.DDG.I.4-Molecular biology and genomic

    The acute effects of daily nicotine intake on heart rate – a toxicokinetic and toxicodynamic modelling study

    No full text
    Joint physiologically-based toxicokinetic and toxicodynamic (PBTK/TD) modelling is applied to simulate concentration-time profiles of nicotine, a well-known stimulant, in the human body following single and repeated dosing. Both kinetic and dynamic models were first calibrated by using in vivo data from the literature. The models were then used to estimate the blood and liver concentrations of nicotine in terms of the Area Under Curve (AUC) and the peak concentration (Cmax) for selected exposure scenarios based on inhalation (cigarette smoking), oral intake (nicotine lozenges) and dermal absorption (nicotine patches). The model simulations indicate that whereas frequent cigarette smoking gives rise to high AUC and Cmax in blood, the use of nicotine-rich dermal patches leads to high AUC and Cmax in the liver. Venous blood concentrations were used to estimate one of the most common acute effects, mean heart rate, both at rest and during exercise. These estimations show that cigarette smoking causes a high peak heart rate, whereas dermal absorption causes a high mean heart rate over 48 hours. This study illustrates the potential of using PBTK/TD modelling in analysing the safety of nicotine-containing products.JRC.F.3-Chemicals Safety and Alternative Method
    corecore