24 research outputs found

    Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme

    Get PDF
    Therapy options at the time of recurrence of glioblastoma multiforme are often limited. We investigated whether treatment with a new intratumoral thermotherapy procedure using magnetic nanoparticles improves survival outcome. In a single-arm study in two centers, 66 patients (59 with recurrent glioblastoma) received neuronavigationally controlled intratumoral instillation of an aqueous dispersion of iron-oxide (magnetite) nanoparticles and subsequent heating of the particles in an alternating magnetic field. Treatment was combined with fractionated stereotactic radiotherapy. A median dose of 30 Gy using a fractionation of 5 × 2 Gy/week was applied. The primary study endpoint was overall survival following diagnosis of first tumor recurrence (OS-2), while the secondary endpoint was overall survival after primary tumor diagnosis (OS-1). Survival times were calculated using the Kaplan–Meier method. Analyses were by intention to treat. The median overall survival from diagnosis of the first tumor recurrence among the 59 patients with recurrent glioblastoma was 13.4 months (95% CI: 10.6–16.2 months). Median OS-1 was 23.2 months while the median time interval between primary diagnosis and first tumor recurrence was 8.0 months. Only tumor volume at study entry was significantly correlated with ensuing survival (P < 0.01). No other variables predicting longer survival could be determined. The side effects of the new therapeutic approach were moderate, and no serious complications were observed. Thermotherapy using magnetic nanoparticles in conjunction with a reduced radiation dose is safe and effective and leads to longer OS-2 compared to conventional therapies in the treatment of recurrent glioblastoma

    Interventional MR imaging: state of the art and future perspectives

    No full text

    Identification of a tRNA-specific nuclear export receptor

    No full text
    In eukaryotes, tRNAs are synthesized in the nucleus and after several maturation steps exported to the cytoplasm. Here, we identify exportin-t as a specific mediator of tRNA export. It is a RanGTP-binding, importin beta-related factor with predominantly nuclear localization. It shuttles rapidly between nucleus and cytoplasm and interacts with nuclear pore complexes. Exportin-t binds tRNA directly and with high affinity. Its cellular concentration in Xenopus oocytes was found to be rate-limiting for export of all tRNAs tested, as judged by microinjection experiments. RanGTP regulates the substrate-exportin-t interaction such that tRNA can be preferentially bound in the nucleus and released in the cytoplasm

    LOCALITE - A Frameless Neuronavigation System for Interventional Magnetic Resonance Imaging Systems

    No full text
    . LOCALITE is a frameless neuronavigation system that particularly addresses a problem with currentinterventional magnetic resonance imaging #iMRI# systems: non-interactive response time in the interactive scan mode and poor image quality with fast scanning sequences. LOCALITE calculates image planes selected via a handheld localizer from pre- or intra-operativevolume data sets. This approach provides a really interactive localizer device with high quality images. The volume data are generated after the patient has been broughtinto the operating room and #xed within the iMRI. Images are part of an enhanced reality scenario containing only the salient visual information for the intra-operative task rather than letting the surgeon drown in lots of images. First studies show that LOCALITE enables the surgeon to use the iMRI system intuitively and much faster. 1 Introduction With minimally invasiveinterventions, the surgeon&apos;s direct view is often extremely restricted. Recent ..

    Inhalation of nitric oxide prevents ischemic brain damage in experimental stroke by selective dilatation of collateral arterioles

    No full text
    RATIONALE: Stroke is the third most common cause of death in industrialized countries. The main therapeutic target is the ischemic penumbra, potentially salvageable brain tissue that dies within the first few hours after blood flow cessation. Hence, strategies to keep the penumbra alive until reperfusion occurs are needed. OBJECTIVE:: To study the effect of inhaled nitric oxide on cerebral vessels and cerebral perfusion under physiological conditions and in different models of cerebral ischemia. METHODS AND RESULTS:: This experimental study demonstrates that inhaled nitric oxide (applied in 30% oxygen/70% air mixture) leads to the formation of nitric oxide carriers in blood that distribute throughout the body. This was ascertained by in vivo microscopy in adult mice. Although under normal conditions inhaled nitric oxide does not affect cerebral blood flow, after experimental cerebral ischemia induced by transient middle cerebral artery occlusion it selectively dilates arterioles in the ischemic penumbra, thereby increasing collateral blood flow and significantly reducing ischemic brain damage. This translates into significantly improved neurological outcome. These findings were validated in independent laboratories using two different mouse models of cerebral ischemia and in a clinically relevant large animal model of stroke. CONCLUSIONS:: Inhaled nitric oxide thus may provide a completely novel strategy to improve penumbral blood flow and neuronal survival in stroke or other ischemic conditions
    corecore