166 research outputs found

    Precision Measurements of the Top Quark Mass at the Tevatron

    Get PDF
    We report precision measurements of the top quark mass using events collected by the D{\O}and CDF II detectors from ppˉp\bar{p} collisions at s=1.96\sqrt s = 1.96 TeV at the Fermilab Tevatron. Measurements are presented in multiple decay channels. In addition, we present a combination of the most precise measurements in each channel to date: Mtop=172.5±1.3stat±1.9systGeV/c2 M_{top} = 172.5 \pm 1.3_{stat} \pm 1.9_{syst} {\textrm GeV}/c^2 Precision Measurements of the Top Quark Mass at the TevatronComment: 4 pages, 7 figure

    Progress in Top Quark Physics

    Full text link
    Experimental measurements of the properties of the top quark have improved and will continue to improve significantly, with the excellent operation of the CDF and D0 experiments and the Tevatron ppˉp\bar{p} collider at the Fermi National Accelerator Laboratory. All of the final state experimental signatures from top quark production and decay are being analysed to test if this most massive quark is sensitive to new physics beyond the standard model. So far, observations are consistent with the standard model. New techniques have dramatically improved the precision of the top quark mass measurement to 1.7% and set the stage for a sub-1% measurement by 2008. This improved knowledge of the top quark mass sharpens the standard model prediction for the mass of the undiscovered Higgs boson, with implications for Higgs studies at the future LHC and ILC.Comment: 11 pages. Conference proceedings for PANIC05, Particles and Nuclei International Conference, Santa Fe, New Mexico, October 24-28, 200

    Fixing All Moduli in a Simple F-Theory Compactification

    Get PDF
    We discuss a simple example of an F-theory compactification on a Calabi-Yau fourfold where background fluxes, together with nonperturbative effects from Euclidean D3 instantons and gauge dynamics on D7 branes, allow us to fix all closed and open string moduli. We explicitly check that the known higher order corrections to the potential, which we neglect in our leading approximation, only shift the results by a small amount. In our exploration of the model, we encounter interesting new phenomena, including examples of transitions where D7 branes absorb O3 planes, while changing topology to preserve the net D3 charge.Comment: 68 pages, 19 figures; v2: references adde

    On the influence of the cosmological constant on gravitational lensing in small systems

    Full text link
    The cosmological constant Lambda affects gravitational lensing phenomena. The contribution of Lambda to the observable angular positions of multiple images and to their amplification and time delay is here computed through a study in the weak deflection limit of the equations of motion in the Schwarzschild-de Sitter metric. Due to Lambda the unresolved images are slightly demagnified, the radius of the Einstein ring decreases and the time delay increases. The effect is however negligible for near lenses. In the case of null cosmological constant, we provide some updated results on lensing by a Schwarzschild black hole.Comment: 8 pages, 1 figure; v2: extended discussion on the lens equation, references added, results unchanged, in press on PR

    A search for the most massive galaxies: Double Trouble?

    Get PDF
    We describe the results of a search for galaxies with large (> 350 km/s) velocity dispersions. The largest systems we have found appear to be the extremes of the early-type galaxy population: compared to other galaxies with similar luminosities, they have the largest velocity dispersions and the smallest sizes. However, they are not distant outliers from the Fundamental Plane and mass-to-light scaling relations defined by the bulk of the early-type galaxy population. They may host the most massive black holes in the Universe, and their abundance and properties can be used to constrain galaxy formation models. Clear outliers from the scaling relations tend to be objects in superposition (angular separations smaller than 1 arcsec), evidence for which comes sometimes from the spectra, sometimes from the images, and sometimes from both. The statistical properties of the superposed pairs, e.g., the distribution of pair separations and velocity dispersions, can be used to provide useful information about the expected distribution of image multiplicities, separations and flux ratios due to gravitational lensing by multiple lenses, and may also constrain models of their interaction rates.Comment: 20 pages, 8 figures. Accepted by AJ. The full set of figures in Appendix B is available at http://www.physics.upenn.edu/~bernardm/PAPERS/BIGEtypes/bernardi.FIG-B.ps.gz Figure 8 did not show the set of galaxies described in the text of the appendix. This has now been correcte

    Report of the Dark Energy Task Force

    Get PDF
    Dark energy appears to be the dominant component of the physical Universe, yet there is no persuasive theoretical explanation for its existence or magnitude. The acceleration of the Universe is, along with dark matter, the observed phenomenon that most directly demonstrates that our theories of fundamental particles and gravity are either incorrect or incomplete. Most experts believe that nothing short of a revolution in our understanding of fundamental physics will be required to achieve a full understanding of the cosmic acceleration. For these reasons, the nature of dark energy ranks among the very most compelling of all outstanding problems in physical science. These circumstances demand an ambitious observational program to determine the dark energy properties as well as possible
    corecore