20 research outputs found

    Direct, stigmatic, imaging with curved surfaces

    Get PDF
    We study the possibilities of direct (using one intersection with each light ray) stigmatic imaging with a curved surface that can change ray directions in an arbitrary way. By purely geometric arguments we show that the only possible case of such imaging is the trivial one where the image of any point is identical to the point itself and the surface does not perform any change of the ray direction at all. We also discuss an example of a curved surface which performs indirect stigmatic imaging after twice intersecting each light ray

    Dr TIM: Ray-tracer TIM, with additional specialist scientific capabilities

    Full text link
    We describe several extensions to TIM, a raytracing program for ray-optics research. These include relativistic raytracing; simulation of the external appearance of Eaton lenses, Luneburg lenses and generalized focusing gradient-index (GGRIN) lenses, which are types of perfect imaging devices; raytracing through interfaces between spaces with different optical metrics; and refraction with generalised confocal lenslet arrays, which are particularly versatile METATOYs.Comment: 12 pages, 16 figure

    Invisibility cloaking without superluminal propagation

    Get PDF
    Conventional cloaking based on Euclidean transformation optics requires that the speed of light should tend to infinity on the inner surface of the cloak. Non-Euclidean cloaking still needed media with superluminal propagation. Here we show by giving an example that this is no longer necessary

    Efficient sharing of a continuous-variable quantum secret

    Full text link
    We propose an efficient scheme for sharing a continuous variable quantum secret using passive optical interferometry and squeezers: this efficiency is achieved by showing that a maximum of two squeezers is required to replicate the secret state, and we obtain the cheapest configuration in terms of total squeezing cost. Squeezing is a cost for the dealer of the secret as well as for the receivers, and we quantify limitations to the fidelity of the replicated secret state in terms of the squeezing employed by the dealer.Comment: 7 pages, 3 figure

    Non-Euclidean cloaking for light waves

    Full text link
    Non-Euclidean geometry combined with transformation optics has recently led to the proposal of an invisibility cloak that avoids optical singularities and therefore can work, in principle, in a broad band of the spectrum [U. Leonhardt and T. Tyc, Science 323, 110 (2009)]. Such a cloak is perfect in the limit of geometrical optics, but not in wave optics. Here we analyze, both analytically and numerically, full wave propagation in non-Euclidean cloaking. We show that the cloaking device performs remarkably well even in a regime beyond geometrical optics where the device is comparable in size with the wavelength. In particular, the cloak is nearly perfect for a spectrum of frequencies that are related to spherical harmonics. We also show that for increasing wavenumber the device works increasingly better, approaching perfect behavior in the limit of geometrical optics

    An omnidirectional retroreflector based on the transmutation of dielectric singularities

    Full text link
    In the field of transformation optics, metamaterials mimic the effect of coordinate transformations on electromagnetic waves, creating the illusion that the waves are propagating through a virtual space. Transforming space by appropriately designed materials makes devices possible that have been deemed impossible. In particular, transformation optics has led to the demonstration of invisibility cloaking for microwaves, surface plasmons and infrared light. Here we report the achievement of another "impossible task". We implement, for microwaves, a device that would normally require a dielectric singularity, an infinity in the refractive index. We transmute a singularity in virtual space into a mere topological defect in a real metamaterial. In particular, we demonstrate an omnidirectional retroreflector, a device for faithfully reflecting images and for creating high visibility, from all directions. Our method is robust, potentially broadband and similar techniques could be applied for visible light
    corecore