Direct, stigmatic, imaging with curved surfaces
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We study the possibilities of direct (using one intersection with each light ray) stigmatic imaging with a curved
surface that can change ray directions in an arbitrary way. By purely geometric arguments we show that the
only possible case of such imaging is the trivial one where the image of any point is identical to the point itself
and the surface does not perform any change of the ray direction at all. We also discuss an example of a curved
surface which performs indirect stigmatic imaging after twice intersecting each light ray.
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1. Introduction

FEuclidean transformation optics is a way of designing
optical instruments by considering a volume of (stan-
dard) flat space (“electromagnetic space”), imagining a
distortion of this volume, and then designing spatially-
varying material parameters in the volume which dis-
tort any light ray passing through the volume in the
same way. (In non-Euclidean transformation optics [1],
electromagnetic space can be curved.) The distortion is
what actually happens, which is why the distorted space
is called “physical space”, but to light (and to any ob-
server who looks at the volume) it looks like there is
no distortion, that is as if the instrument was not there.
The positions of any intersections of light rays within the
volume in electromagnetic space are mapped to differ-
ent intersection positions in physical space, and in this
sense the instrument stigmatically (perfectly sharp in
terms of geometrical optics) images any point in electro-
magnetic space to a corresponding position in physical
space. After passage through the instrument, light rays
travel along the straight-line continuation of their ini-
tial trajectory, which implies that transmission through
the instrument maps any object position to the identical
image position.

We are interested in stigmatic imaging by thin sur-
faces, by which we mean that any transmitted light ray
leaves the surface from the same position where it in-
tersected the surface, but on the other side. Imaging
with surfaces is of particular interest to transformation-
optics devices when the transformation is piecewise ho-
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mogeneous, like in the cloak described in Ref. [2], as any
interface between piecewise homogeneous media then
must stigmatically image the surrounding space. Our
study assumes that general light-ray-direction mappings
(i.e. completely generalised laws of refraction) can be re-
alised. Note that wave-optical limitations mean that this
is not actually the case, but by introducing discontinu-
ities into transmitted phase fronts it is possible to realise
very good approximations to wave-optically forbidden
light-ray-direction mappings [3]. For us, this topic is in-
teresting as it is at the intersection of two of our areas
of research: surfaces that perform generalised refraction,
and perfect imaging in general and transformation optics
in particular.

Generalised refraction has recently gained prominence
with a metamaterial surface that changes the direction
of transmitted light rays according to a generalised law
of refraction [4]. It is also possible to achieve generalised
refraction using transformation optics [5]. Our own in-
terest is in pixellated refraction: the “pixels” are pieces
of the transmitted beam that are transformed indepen-
dently; between the pixels, the beam is riddled with dis-
continuities that develop into optical vortices [6, 7]. This
compromises beam quality, but it does allow us to per-
form refraction so general that it transforms many inci-
dent light-ray fields into apparently (but not actually)
wave-optically forbidden light-ray fields [3].

We previously studied stigmatic imaging with planar
inhomogeneous surfaces [8] and planar homogeneous sur-
faces [9]. Here we investigate a natural generalisation of
this work: stigmatic imaging with curved surfaces. Our
argument is purely geometric, and therefore more fun-
damental than previous arguments about imaging that
use optical path length (e.g. [10, 11]) in that it does not



assume the existence of a continuous wave field that cor-
responds to the ray field. Our results therefore apply not
only to the ray fields corresponding to continuous light
waves, but also to those corresponding to the discontin-
uous light waves resulting from wave-optically forbidden
light-ray-direction mappings.

2. Statement of the problem

Let there be a surface 0. The question is, under what
conditions can the surface perform stigmatic imaging of
some 3D region R? To answer this question, we will as-
sume that the surface o performs stigmatic imaging, and
analyse what the consequences of this assumption are.

We formulate our argument for the case when R is an
open set, that is a region of space that contains an open
ball (the inside of a sphere of non-zero radius) around
each of its points. R is therefore the inside of some 3D
volume, and does not include the points on the volume’s
boundary. The assumption that R is open excludes cer-
tain types of regions such as those containing isolated
points or lines; for such regions our argument does not
necessarily apply. For regions R which are open, and to
which our argument applies, it is physically irrelevant
whether or not we include the boundary as any bound-
ary point is arbitrarily close to at least one point in R.

Our argument is concerned only with the straight lines
on which the light rays in object and image space travel
immediately before and after intersecting the surface, re-
spectively. If we consider all object-space straight lines
through o that intersect a point A in R, the object, then
the corresponding image-space straight lines all intersect
at another point, A’, which is the image of A. Note that
A’ exists according to our assumption that o performs
stigmatic imaging. This assumption implies that an im-
age position exists for any object point in R, and we will
continue to denote such images by the name of the object
point, primed. We restrict ourselves to direct imaging,
i.e. we consider the effect of light rays intersecting o only
once. We will show that if the surface is a plane then
there can in principle exist infinitely many different map-
pings between object and image positions. On the other
hand, if the surface is curved, only the trivial mapping
is possible by which each point is imaged to itself, and
the surface either transmits without direction-change or
retro-reflects all light rays.

Let us start with three non-collinear points A, B, C in
the region R, positioned such that the straight lines AB,
AC and BC intersect the surface o. If we denote these
intersection points by Pap, Pac and Ppc, respectively,
then clearly all the points A, B, C, Pag, Pac and Ppc
lie in one plane. If any of the straight lines, for example
the straight line through A and B, intersects with ¢ more
than once, then Pap can be any one of the intersection
points. The intersection points of the straight lines A’B’,
A’C’ and B'C’ with the surface o are again Pag, Pac
and Ppc, respectively, because each ray leaves o from
the same point where it intersected it. By the same
argument then all the points A’, B’, C’, Pap, Pac and
Ppc lie in one plane.

Note that we do not make assumptions about whether
object and image positions are real or virtual, i.e.
whether it is the actual light rays that would intersect
or their straight-line continuations. It is therefore not
important for our argument if the light-ray direction is
reversed, and so it does not matter from which side of the
surface the object rays hit the surface and from which
side the image rays leave — the surface can be transmis-
sive or reflective, and it can even have unusual mathe-
matical properties such as having only one side (like a
Mbobius strip).

3. Planar surface

First suppose that the surface o is a plane. This case has
already been examined in Ref. [8]; we review it here in a
very concise form and as a way of introducing the type
of argument we will use to proof the stigmatic imaging
properties of curved surfaces.

We will show that the imaging transformation that
assigns every point in region R its image is uniquely
determined by just two points, A and B, and their im-
ages A’ and B’ (that must satisfy the condition that
both the straight lines AB and A’B’ intersect o at the
same point Pag). We will first construct the image C’
of a point C that is non-collinear with A and B, but
otherwise arbitrary. To do that, we find the intersec-
tion Poc and Ppc of the straight lines AC and BC,
respectively, with o. The image C’ of C will then be at
the intersection of the straight lines PocA’ and PgcB’.
For this to be the case, all the points A’, B’, Poc and
Ppc must lie in one plane, which they indeed do: it is
the plane containing the straight lines PopPacPpc and
PapA’B’ (Fig. 1(a)). Note that this plane is not neces-
sarily perpendicular to o. Note also that a different pair
of object-image positions, e.g. A and C and the corre-
sponding images A’ and C’, allows us to construct the
image of points that are collinear with A and B.

We can also prove that the mapping is consistent. In
other words, if we want to determine the position of the
image of a fourth point, D, which lies outside the plane
ABC, by the above construction, then employing the
points A, B, A’ and B’ for this yields the same position
of the point D’ as employing other known pairs of ob-
ject and image positions, for example A, C, A’ and C'.
Performing analogous steps to those above, we find that
the point D’ must lie at the intersection of the straight
lines A’'Pop and B’Pgp, as well as on the intersection of
the lines A’'Pap and C'Pcp. What ensures that all the
three straight lines A’'Pap, B'Pgp and C'Pcp intersect
at a single point? It is the fact that each pair of these
straight lines lies in some plane by the same argument
we used above for point C, and as there are three pos-
sible pairs of these lines, they lie in three planes. The
intersection point of these three planes is then also the
intersection point of these three straight lines: this is the
unique position of the point D’. This completes the proof
of consistency of the stigmatic imaging by the plane.

In Ref. [8] the mapping between object coordinates
(2,9, z) and image coordinates (2',y’, z’) due to a surface



Fig. 1. Light-ray trajectories through pairs of object posi-
tions and through the corresponding image positions formed
by a surface 0. A, B and C are the object positions, A’, B
and C’ are the corresponding image positions. Pap is the
position where the light ray through A and B intersects the
surface, after which it continues to pass through A’ and B’
(similarly for Pac and Pgpc). (a) For a planar surface, the
points Pag, Pac and Pgc lie on the straight line where the
plane containing the object positions and the plane contain-
ing the corresponding image positions intersect. (Both planes
are shaded.) (b) For a curved surface, the points Pag, Pac
and Ppc do not in general lie on a straight line. As they
have to lie on the line where the plane containing the object
positions intersects the plane containing the corresponding
image positions, those planes have to be identical.

in the z plane was found to be [12]
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where f and g are parameters of the surface. This is the
mapping due to an ideal thin lens in which the object-
and image-sided focal lengths, f and g, are in general
different. Note that the required surface is, in general,
inhomogeneous.

The special case of a homogeneous surface was treated
in [9]. If such a homogeneous surface is the z = 0 plane,
then the mapping is

¥=x—zt,, y=y—zt, Z=nz, (2)

where t,, t, and n are parameters that can be freely
chosen.

Of course, the explicit relationship between object and
image coordinates means that any light ray that reaches
a point on the surface from an object position must be
redirected such that it subsequently passes through the
corresponding image position. This then fixes the gener-
alised law of refraction at the surface point. In Ref. [9],
this was shown to be the light-ray-direction change per-
formed by a subset of a class of micro-structured surfaces
called generalised confocal lenslet arrays (gCLAs) [13].
But the homogeneous surface from Ref. [13] was reached
as the limit of an arbitrary point on the inhomogeneous
surface from Ref. [8] stretched out over the entire sur-
face, which implies that the inhomogeneous planar sur-
faces from Ref. [8] must also refract according to the
light-ray-direction change in gCLAs.

4. Curved surface

Suppose now that the surface o is curved. We again
choose three non-collinear points A, B, and C in R such
that the straight lines through each pair of the points A,
B and C intersect o, i.e. such that corresponding points
Pag, Pac, Pac exist. The points Pag, Pac, Pec will lie
on the intersection of the plane ABC with 0. In the case
of a planar surface o discussed above, this intersection is
a straight line, so Pag, Pac, Ppc are collinear. However,
now o is curved, so it is in general no longer true that the
points Pag, Pac, Ppc are collinear (Fig. 1(b)). Instead
they lie in a uniquely defined plane in which the points
A’, B’ and C’ must also lie [14], but as this plane also
contains the object positions A, B and C, this means
that the points A, B, C, A’, B’ and C’ all lie in the same
plane.

Before we proceed with the argument, we must men-
tion that it might be possible to choose A, B and C such
that the points Pap, Pac, Ppc are collinear even for a
curved surface o. Clearly, this can happen for surfaces
that contain planar regions and for surfaces comprising
straight lines, such as ruled surfaces; more generally it
can be the case for any surface o that intersects with
at least one straight line in three or more points. How-
ever, thanks to the fact that the points A, B, C can be
positioned anywhere within a spherical subregion of R
— one of the open balls surrounding a point —, each of
the straight lines through pairs of these points can point
in any direction, and therefore intersect any point on o.
This, in turn, means that we can position A, B and C
such that the points Pap, Pac, Ppc are not collinear,
as the opposite would necessarily imply that o is planar,
which would be a contradiction with our assumption.

Now we consider four points, A, B, C and D, in R. D
can be an any arbitrary point in R; we choose the points
A, B and C such that they are non-collinear, that the
plane ABC does not contain D, and that all straight lines
through any pair of the points A, B, C and D intersect
o (at positions Pap, Pac, Psc, Pap, Pep and Pcp).
Because we can position the points A, B, C anywhere in a
spherical subregion of R, namely the open ball around D,
we can ensure that all triples of the intersection points
Pas, Pac, Pec, Pap, Pep and Pcop are non-collinear.



We have shown above that the images A’, B’ and C’
lie in the same plane as A, B and C themselves, and
we can now repeat this argument for each of the triples
of points {A,B,D}, {A,C,D} and {B,C,D}. We see that
each of the triples {Pag, Pap, Psp}, {Pac, Pap, Pep},
and {Ppc, Ppp, Pcep} is non-collinear and thus spans
a unique plane. It then follows by the above argument
that the image positions A’, B’, and D’ lie in the plane
ABD, A’, C’, and D’ lie in the plane ACD, and B’, C’,
and D’ lie in the plane BCD. Specifically, the point D’
lies in all three planes ABD, ACD and BCD, i.e. at their
intersection. This intersection is unique because A, B,
C are non-collinear and we have chosen D to lie outside
the plane ABC. The point D also lies at the intersection
of these planes, and so we come to the conclusion that
the points D’ and D coincide. As the point D can be
any point in R, this shows that the curved surface o can
image R only trivially, imaging each point in R to itself.
This implies that o either transmits any light ray from
R without altering its direction, or that it retro-reflects
such light rays — either way, the light ray continues
along the same straight line.

5. Indirect imaging

The argument we used above does not apply to indi-
rect imaging, i.e. imaging due to multiple transmissions
through a surface. Such indirect imaging is not the main
focus of this paper; nevertheless, we briefly observe the
following.

Fig. 2(b) shows a diagram of a spherical surface that
changes the direction of a light ray by 90° in the plane of
incidence (which includes the ray and the surface nor-
mal), so the light-ray-direction change is according to
the generalised law of refraction

,[6-90°if0>0,
9_{9+90°if0<0, ®)

where 6 is the angle of incidence and #’ is the angle of
refraction. For reasons that will become clear, we call
a surface that refracts according to Eqn (3) an Eaton-
lens surface. Our argument about direct imaging with
curved surfaces shows that there can be no images after
a single passage through the surface. However, after two
passages through the surface, such a sphere would look
identical to an Eaton lens [16], which images each point
P to a point P’ on the opposite side of the lens centre [17]
(Fig. 2(c)). We have therefore discovered an example of
a curved, homogeneous, surface, that performs perfect
stigmatic imaging after two intersections.

6. Conclusions

In conclusion, we have found that non-trivial direct, stig-
matic, imaging is restricted to planar surfaces. Our re-
sult is relevant to a number of areas of research, includ-
ing generalised refraction and transformation optics.
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