39 research outputs found

    Ionic immune suppression within the tumour microenvironment limits T cell effector function.

    Get PDF
    Tumours progress despite being infiltrated by tumour-specific effector T cells. Tumours contain areas of cellular necrosis, which are associated with poor survival in a variety of cancers. Here, we show that necrosis releases intracellular potassium ions into the extracellular fluid of mouse and human tumours, causing profound suppression of T cell effector function. Elevation of the extracellular potassium concentration ([K+]e) impairs T cell receptor (TCR)-driven Akt-mTOR phosphorylation and effector programmes. Potassium-mediated suppression of Akt-mTOR signalling and T cell function is dependent upon the activity of the serine/threonine phosphatase PP2A. Although the suppressive effect mediated by elevated [K+]e is independent of changes in plasma membrane potential (Vm), it requires an increase in intracellular potassium ([K+]i). Accordingly, augmenting potassium efflux in tumour-specific T cells by overexpressing the potassium channel Kv1.3 lowers [K+]i and improves effector functions in vitro and in vivo and enhances tumour clearance and survival in melanoma-bearing mice. These results uncover an ionic checkpoint that blocks T cell function in tumours and identify potential new strategies for cancer immunotherapy

    Pre-40S ribosome biogenesis factor Tsr1 is an inactive structural mimic of translational GTPases

    Get PDF
    Budding yeast Tsr1 is a ribosome biogenesis factor with sequence similarity to GTPases, which is essential for cytoplasmic steps in 40S subunit maturation. Here we present the crystal structure of Tsr1 at 3.6 Å. Tsr1 has a similar domain architecture to translational GTPases such as EF-Tu and the selenocysteine incorporation factor SelB. However, active site residues required for GTP binding and hydrolysis are absent, explaining the lack of enzymatic activity in previous analyses. Modelling of Tsr1 into cryo-electron microscopy maps of pre-40S particles shows that a highly acidic surface of Tsr1 is presented on the outside of pre-40S particles, potentially preventing premature binding to 60S subunits. Late pre-40S maturation also requires the GTPase eIF5B and the ATPase Rio1. The location of Tsr1 is predicted to block binding by both factors, strongly indicating that removal of Tsr1 is an essential step during cytoplasmic maturation of 40S ribosomal subunits

    Transcriptome-wide analysis of alternative routes for RNA substrates into the exosome complex

    Get PDF
    <div><p>The RNA exosome complex functions in both the accurate processing and rapid degradation of many classes of RNA. Functional and structural analyses indicate that RNA can either be threaded through the central channel of the exosome or more directly access the active sites of the ribonucleases Rrp44 and Rrp6, but it was unclear how many substrates follow each pathway <i>in vivo</i>. We used CRAC (UV crosslinking and analysis of cDNA) in growing cells to identify transcriptome-wide interactions of RNAs with the major nuclear exosome-cofactor Mtr4 and with individual exosome subunits (Rrp6, Csl4, Rrp41 and Rrp44) along the threaded RNA path. We compared exosome complexes lacking Rrp44 exonuclease activity, carrying a mutation in the Rrp44 S1 RNA-binding domain predicted to disfavor direct access, or with multiple mutations in Rrp41 reported to impede RNA access to the central channel <i>in vitro</i>. Preferential use of channel-threading was seen for mRNAs, 5S rRNA, scR1 (SRP) and aborted tRNAs transcripts. Conversely, pre-tRNAs preferentially accessed Rrp44 directly. Both routes participated in degradation and maturation of RNAPI transcripts, with hand-over during processing. Rrp41 mutations blocked substrate passage through the channel to Rrp44 only for cytoplasmic mRNAs, supporting the predicted widening of the lumen in the Rrp6-associated, nuclear complex. Many exosome substrates exhibited clear preferences for a specific path to Rrp44. Other targets showed redundancy, possibly allowing the efficient handling of highly diverse RNA-protein complexes and RNA structures. Both threading and direct access routes involve the RNA helicase Mtr4. mRNAs that are predominately nuclear or cytoplasmic exosome substrates can be distinguished <i>in vivo</i>.</p></div

    Large-scale profiling of noncoding RNA function in yeast

    Get PDF
    Noncoding RNAs (ncRNAs) are emerging as key regulators of cellular function. We have exploited the recently developed barcoded ncRNA gene deletion strain collections in the yeast Saccharomyces cerevisiae to investigate the numerous ncRNAs in yeast with no known function. The ncRNA deletion collection contains deletions of tRNAs, snoRNAs, snRNAs, stable unannotated transcripts (SUTs), cryptic unstable transcripts (CUTs) and other annotated ncRNAs encompassing 532 different individual ncRNA deletions. We have profiled the fitness of the diploid heterozygous ncRNA deletion strain collection in six conditions using batch and continuous liquid culture, as well as the haploid ncRNA deletion strain collections arrayed individually onto solid rich media. These analyses revealed many novel environmental-specific haplo-insufficient and haplo-proficient phenotypes providing key information on the importance of each specific ncRNA in every condition. Co-fitness analysis using fitness data from the heterozygous ncRNA deletion strain collection identified two ncRNA groups required for growth during heat stress and nutrient deprivation. The extensive fitness data for each ncRNA deletion strain has been compiled into an easy to navigate database called Yeast ncRNA Analysis (YNCA). By expanding the original ncRNA deletion strain collection we identified four novel essential ncRNAs; SUT527, SUT075, SUT367 and SUT259/691. We defined the effects of each new essential ncRNA on adjacent gene expression in the heterozygote background identifying both repression and induction of nearby genes. Additionally, we discovered a function for SUT527 in the expression, 3’ end formation and localization of SEC4, an essential protein coding mRNA. Finally, using plasmid complementation we rescued the SUT075 lethal phenotype revealing that this ncRNA acts in trans. Overall, our findings provide important new insights into the function of ncRNAs

    Maf1-mediated repression of RNA polymerase III transcription inhibits tRNA degradation via RTD pathway

    Get PDF
    tRNA precursors, which are transcribed by RNA polymerase III, undergo end-maturation, splicing and base modifications. Hypomodified tRNAs, such as tRNAVal(AAC), lacking 7-methylguanosine and 5-methylcytidine modifications, are subject to degradation by a rapid tRNA decay pathway. Here we searched for genes which, when overexpressed, restored stability of tRNAVal(AAC) molecules in a modification–deficient trm4Δtrm8Δ mutant. We identified TEF1 and VAS1, encoding elongation factor eEF1A and valyl-tRNA synthetase respectively, which likely protect hypomodified tRNAVal(AAC) by direct interactions. We also identified MAF1 whose product is a general negative regulator of RNA polymerase III. Expression of an Maf1-7A mutant that constitutively repressed RNA polymerase III transcription resulted in increased stability of hypomodified tRNAVal(AAC). Strikingly, inhibition of tRNA transcription in a Maf1-independent manner, either by point mutation in RNA polymerase III subunit Rpc128 or decreased expression of Rpc17 subunit, also suppressed the turnover of the hypomodified tRNAVal(AAC). These results support a model where inhibition of tRNA transcription leads to stabilization of hypomodified tRNAVal(AAC) due to more efficient protection by tRNA-interacting proteins

    Maf1, repressor of RNA polymerase III, indirectly affects tRNA processing

    Get PDF
    Maf1 is negative regulator of RNA polymerase III in yeast. We observed high levels of both primary transcript and end-matured, intron-containing pre-tRNAs in the maf1∆ strain. This pre-tRNA accumulation could be overcome by transcription inhibition, arguing against a direct role of Maf1 in tRNA maturation and suggesting saturation of processing machinery by the increased amounts of primary transcripts. Saturation of the tRNA exportin, Los1, is one reason why end-matured intron-containing pre-tRNAs accumulate in maf1∆ cells. However, it is likely possible that other components of the processing pathway are also limiting when tRNA transcription is increased. According to our model, Maf1- mediated transcription control and nuclear export by Los1 are two major stages of tRNA biosynthesis that are regulated by environmental conditions in a coordinated manner
    corecore