3,101 research outputs found
Autocatalytic plume pinch-off
A localized source of buoyancy flux in a non-reactive fluid medium creates a
plume. The flux can be provided by either heat, a compositional difference
between the fluid comprising the plume and its surroundings, or a combination
of both. For autocatalytic plumes produced by the iodate-arsenous acid
reaction, however, buoyancy is produced along the entire reacting interface
between the plume and its surroundings. Buoyancy production at the moving
interface drives fluid motion, which in turn generates flow that advects the
reaction front. As a consequence of this interplay between fluid flow and
chemical reaction, autocatalytic plumes exhibit a rich dynamics during their
ascent through the reactant medium. One of the more interesting dynamical
features is the production of an accelerating vortical plume head that in
certain cases pinches-off and detaches from the upwelling conduit. After
pinch-off, a new plume head forms in the conduit below, and this can lead to
multiple generations of plume heads for a single plume initiation. We
investigated the pinch-off process using both experimentation and simulation.
Experiments were performed using various concentrations of glycerol, in which
it was found that repeated pinch-off occurs exclusively in a specific
concentration range. Autocatalytic plume simulations revealed that pinch-off is
triggered by the appearance of accelerating flow in the plume conduit.Comment: 10 figures. Accepted for publication in Phys Rev E. See also
http://www.physics.utoronto.ca/nonlinear/papers_chemwave.htm
Dynamics of cadmium acclimation in Daphnia pulex:linking fitness costs, cross-tolerance, and hyper-induction of metallothionein
Acclimation increases tolerance to stress in individuals but is assumed to contribute fitness costs when the stressor is absent, though data supporting this widely held claim are sparse. Therefore, using clonal (i.e., genetically identical) cultures of Daphnia pulex, we isolated the contributions of acclimation to the regulation of the metal response gene, metallothionein 1 (MT1), and defined the reproductive benefits and costs of cadmium (Cd)-acclimation. Daphnia pulex were exposed for 50 parthenogenetic generations to environmentally realistic levels (1 Ī¼g Cd/L), and tolerance to Cd and other metals assessed during this period via standard toxicity tests. These tests revealed (1) increased tolerance to Cd compared to genetically identical nonacclimated cultures, (2) fitness costs in Cd-acclimated Daphnia when Cd was removed, and (3) cross-tolerance of Cd-acclimated Daphnia to zinc and silver, but not arsenic, thereby defining a functional role for metallothionein. Indeed, Cd-acclimated clones had significantly higher expression of MT1 mRNA than nonacclimated clones, when Cd exposed. Both the enhanced induction of MT1 and tolerant phenotype were rapidly lost when Cd was removed (1ā2 generations), which is further evidence of acclimation costs. These findings provide evidence for the widely held view that acclimation is costly and are important for investigating evolutionary principles of genetic assimilation and the survival mechanisms of natural populations that face changing environments
Identification of the Infrared Counterpart to a Newly Discovered X-ray Source in the Galactic Center
We present first results of a campaign to find and identify new compact
objects in the Galactic Center. Selecting candidates from a combination of
Chandra and 2MASS survey data, we search for accretion disk signatures via
infrared spectroscopy. We have found the infrared counterpart to the Chandra
source CXO J174536.1-285638, the spectrum of which has strong Br-gamma and HeI
emission. The presence of CIII, NIII, and HeII indicate a binary system. We
suspect that the system is some form of high-mass binary system, either a
high-mass X-ray binary or a colliding wind binary.Comment: 11 pages, 6 figures, ApJ accepted, 200
A Longitudinal Study of the Effect of Genistein on Bone in Two Different Murine Models of Diminished Estrogen-Producing Capacity
This experiment was designed to assess the capacity of dietary genistein (GEN), to attenuate bone loss in ovariectomized (OVX) and ovary-intact VCD-treated mice. Pretreatment of mice with 4-vinylcyclohexene diepoxide (VCD) gradually and selectively destroys ovarian follicles whilst leaving ovarian androgen-producing cells largely intact. VCD induces a perimenopause-like condition prior to the onset of reproductive acyclicity. Sixteen-week-old C57BL/6J mice were randomized to five treatment groups: sham(SHM), OVX, SHM + VCD, OVX + GEN, and SHM + VCD + GEN. In vivo, blood samples were drawn for hormone and isoflavone analyses, estrous cycles were monitored, and X-ray imaging was performed to assess changes in bone parameters. Following sacrifice, ovaries were assessed histologically, bone microarchitecture was evaluated via microcomputed tomography, and bone mechanical properties were measured. Some effects of GEN were observed in OVX mice, but GEN effects were not able to be evaluated in VCD-treated mice due to the subtle diminution of bone during the 4 months of this experiment
Using Epigenetic Networks for the Analysis of Movement Associated with Levodopa Therapy for Parkinson's Disease
Ā© 2016 The Author(s) Levodopa is a drug that is commonly used to treat movement disorders associated with Parkinson's disease. Its dosage requires careful monitoring, since the required amount changes over time, and excess dosage can lead to muscle spasms known as levodopa-induced dyskinesia. In this work, we investigate the potential for using epiNet, a novel artificial gene regulatory network, as a classifier for monitoring accelerometry time series data collected from patients undergoing levodopa therapy. We also consider how dynamical analysis of epiNet classifiers and their transitions between different states can highlight clinically useful information which is not available through more conventional data mining techniques. The results show that epiNet is capable of discriminating between different movement patterns which are indicative of either insufficient or excessive levodopa
Normal Accidents of Expertise
Charles Perrow used the term ānormal accidentsā to characterize a type of catastrophic failure that resulted when complex, tightly coupled production systems encountered a certain kind of anomalous event. These were events in which systems failures interacted with one another in a way that could not be anticipated, and could not be easily understood and corrected. Systems of the production of expert knowledge are increasingly becoming tightly coupled. Unlike classical science, which operated with a long time horizon, many current forms of expert knowledge are directed at immediate solutions to complex problems. These are prone to breakdowns like the kind discussed by Perrow. The example of the Homestake mine experiment shows that even in modern physics complex systems can produce knowledge failures that last for decades. The concept of knowledge risk is introduced, and used to characterize the risk of failure in such systems of knowledge production
On the action of the anti-absence drug ethosuximide in the rat and cat thalamus
The action of ethosuximide (ETX) on Na+, K+, and Ca2+ currents and on tonic and burst-firing patterns was investigated in rat and cat thalamic neurons in vitro by using patch and sharp microelectrode recordings. In thalamocortical (TC) neurons of the rat dorsal lateral geniculate nucleus (LGN), ETX (0.75-1 mM) decreased the noninactivating Na+ current, INaP, by 60% but had no effect on the transient Na+ current. In TC neurons of the rat and cat LGN, the whole-cell transient outward current was not affected by ETX (up to 1 mM), but the sustained outward current was decreased by 39% at 20 mV in the presence of ETX (0.25-0.5 mM): this reduction was not observed in a low Ca2+ (0.5 mM) and high Mg2+ (8 mM) medium or in the presence of Ni2+ (1 mM) and Cd2+ (100 Āµm). In addition, ETX (up to 1 mM) had no effect on the low-threshold Ca2+ current, I T, of TC neurons of the rat ventrobasal (VB) thalamus and LGN and in neurons of the rat nucleus reticularis thalami nor on the high-threshold Ca2+ current in TC neurons of the rat LGN. Sharp microelectrode recordings in TC neurons of the rat and cat LGN and VB showed that ETX did not change the resting membrane potential but increased the apparent input resistance at potentials greater than -60 mV, resulting in an increase in tonic firing. In contrast, ETX decreased the number of action potentials in the burst evoked by a low-threshold Ca2+ potential. The frequency of the remaining action potentials in a burst also was decreased, whereas the latency of the first action potential was increased. Similar effects were observed on the burst firing evoked during intrinsic Ī“ oscillations. These results indicate an action of ETX on / NaP and on the Ca2+-activated K+ current, which explains the decrease in burst firing and the increase in tonic firing, and, together with the lack of action on low- and high-threshold Ca2+ currents, the results cast doubts on the hypothesis that a reduction of / Ļ in thalamic neurons underlies the therapeutic action of this anti-absence medicine
Recommended from our members
Ultrasmall silica nanoparticles directly ligate the T cell receptor complex.
The impact of ultrasmall nanoparticles (<10-nm diameter) on the immune system is poorly understood. Recently, ultrasmall silica nanoparticles (USSN), which have gained increasing attention for therapeutic applications, were shown to stimulate T lymphocytes directly and at relatively low-exposure doses. Delineating underlying mechanisms and associated cell signaling will hasten therapeutic translation and is reported herein. Using competitive binding assays and molecular modeling, we established that the T cell receptor (TCR):CD3 complex is required for USSN-induced T cell activation, and that direct receptor complex-particle interactions are permitted both sterically and electrostatically. Activation is not limited to Ī±Ī² TCR-bearing T cells since those with Ī³Ī“ TCR showed similar responses, implying that USSN mediate their effect by binding to extracellular domains of the flanking CD3 regions of the TCR complex. We confirmed that USSN initiated the signaling pathway immediately downstream of the TCR with rapid phosphorylation of both Ī¶-chain-associated protein 70 and linker for activation of T cells protein. However, T cell proliferation or IL-2 secretion were only triggered by USSN when costimulatory anti-CD28 or phorbate esters were present, demonstrating that the specific impact of USSN is in initiation of the primary, nuclear factor of activated T cells-pathway signaling from the TCR complex. Hence, we have established that USSN are partial agonists for the TCR complex because of induction of the primary T cell activation signal. Their ability to bind the TCR complex rapidly, and then to dissolve into benign orthosilicic acid, makes them an appealing option for therapies targeted at transient TCR:CD3 receptor binding.These studies were supported by grants from the UK Medical Research Council (Grant number MR/R005699/1) and the Natural Sciences and Engineering Research Council of Canada, as well as through sponsorship from HS Pharmaceuticals LLC
- ā¦