104 research outputs found

    Impact of the Adoption and Safe Families Act on youth and their families: Perspectives of foster care providers, youth with emotional disorder, service providers, and judges.

    Get PDF
    This article, which describes a component of a larger research project, focuses on participants' perspectives on (a) ways that the Adoption and Safe Families Act (ASFA) affected access to services for children with emotional or behavioral disabilities and their families, and (b) other ways that the ASFA affected children with emotional or behavioral disabilities and their families. Fifty-eight interviews with 33 participants (youth in out-of-home placements, their parents, foster care providers, service providers, and judges) took place. Participants reported that they believed the ASFA shortened the amount of time families had for correcting problems while their children were in custody. Some service providers may feel less inclined to help families because the law seems to require less from service providers than was required in the past. In addition, participants believed that when courts make decisions involving families, those decisions are more likely to call for termination of parental rights than for reunification. The investigators offer recommendations regarding these issues that involve the ASFA, families, and children with disabilities

    A C57BL/6 Mouse Model of SARS-CoV-2 Infection Recapitulates Age- and Sex-Based Differences in Human COVID-19 Disease and Recovery

    Get PDF
    We present a comprehensive analysis of SARS-CoV-2 infection and recovery using wild type C57BL/6 mice and a mouse-adapted virus, and we demonstrate that this is an ideal model of infection and recovery that phenocopies acute human disease arising from the ancestral SARS-CoV-2. Disease severity and infection kinetics are age- and sex-dependent, as has been reported for humans, with older mice and males in particular exhibiting decreased viral clearance and increased mortality. We identified key parallels with human pathology, including intense virus positivity in bronchial epithelial cells, wide-spread alveolar involvement, recruitment of immune cells to the infected lungs, and acute bronchial epithelial cell death. Moreover, older animals experienced increased virus persistence, delayed dispersal of immune cells into lung parenchyma, and morphologic evidence of tissue damage and inflammation. Parallel analysis of SCID mice revealed that the adaptive immune response was not required for recovery from COVID disease symptoms nor early phase clearance of virus but was required for efficient clearance of virus at later stages of infection. Finally, transcriptional analyses indicated that induction and duration of key innate immune gene programs may explain differences in age-dependent disease severity. Importantly, these data demonstrate that SARS-CoV-2-mediated disease in C57BL/6 mice phenocopies human disease across ages and establishes a platform for future therapeutic and genetic screens for not just SARS-CoV-2 but also novel coronaviruses that have yet to emerge

    A measurement of AFBbA^b_{FB} in lifetime tagged heavy flavour Z decays

    Get PDF

    Limit on Bs0B^0_s oscillation using a jet charge method

    Get PDF
    A lower limit is set on the B_{s}^{0} meson oscillation parameter \Delta m_{s} using data collected from 1991 to 1994 by the ALEPH detector. Events with a high transverse momentum lepton and a reconstructed secondary vertex are used. The high transverse momentum leptons are produced mainly by b hadron decays, and the sign of the lepton indicates the particle/antiparticle final state in decays of neutral B mesons. The initial state is determined by a jet charge technique using both sides of the event. A maximum likelihood method is used to set a lower limit of \, \Delta m_{s}. The 95\% confidence level lower limit on \Delta m_s ranges between 5.2 and 6.5(\hbar/c^{2})~ps^{-1} when the fraction of b quarks from Z^0 decays that form B_{s}^{0} mesons is varied from 8\% to 16\%. Assuming that the B_{s}^{0} fraction is 12\%, the lower limit would be \Delta m_{s} 6.1(\hbar/c^{2})~ps^{-1} at 95\% confidence level. For x_s = \Delta m_s \, \tau_{B_s}, this limit also gives x_s 8.8 using the B_{s}^{0} lifetime of \tau_{B_s} = 1.55 \pm 0.11~ps and shifting the central value of \tau_{B_s} down by 1\sigma

    Measurement of the Bs0^0_s lifetime and production rate with Dsl+^-_s l^+ combinations in Z decays

    Get PDF
    The lifetime of the \bs meson is measured in approximately 3 million hadronic Z decays accumulated using the ALEPH detector at LEP from 1991 to 1994. Seven different \ds decay modes were reconstructed and combined with an opposite sign lepton as evidence of semileptonic \bs decays. Two hundred and eight \dsl candidates satisfy selection criteria designed to ensure precise proper time reconstruction and yield a measured \bs lifetime of \mbox{\result .} Using a larger, less constrained sample of events, the product branching ratio is measured to be \mbox{\pbrresult

    Limit on Bs0B^0_s oscillation using a jet charge method

    No full text
    A lower limit is set on the B_{s}^{0} meson oscillation parameter \Delta m_{s} using data collected from 1991 to 1994 by the ALEPH detector. Events with a high transverse momentum lepton and a reconstructed secondary vertex are used. The high transverse momentum leptons are produced mainly by b hadron decays, and the sign of the lepton indicates the particle/antiparticle final state in decays of neutral B mesons. The initial state is determined by a jet charge technique using both sides of the event. A maximum likelihood method is used to set a lower limit of \, \Delta m_{s}. The 95\% confidence level lower limit on \Delta m_s ranges between 5.2 and 6.5(\hbar/c^{2})~ps^{-1} when the fraction of b quarks from Z^0 decays that form B_{s}^{0} mesons is varied from 8\% to 16\%. Assuming that the B_{s}^{0} fraction is 12\%, the lower limit would be \Delta m_{s} 6.1(\hbar/c^{2})~ps^{-1} at 95\% confidence level. For x_s = \Delta m_s \, \tau_{B_s}, this limit also gives x_s 8.8 using the B_{s}^{0} lifetime of \tau_{B_s} = 1.55 \pm 0.11~ps and shifting the central value of \tau_{B_s} down by 1\sigma

    Measurement of the tau lepton lifetime

    Get PDF
    corecore