23 research outputs found

    Gain-tunable optomechanical cooling in a laser cavity

    Full text link
    We study the optical cooling of the resonator mirror in a cavity-optomechanical system that contains an optical gain medium. We find that the optical damping rate is vanishingly small for an incoherently pumped laser above threshold. In the presence of an external coherent drive however, the optical damping rate can be enhanced substantially with respect to that of a passive cavity. We show that the strength of the incoherent pump provides a conduit to tune the damping rate and the minimum attainable phonon number with the same radiation pressure force, and the latter can be lowered from that of a passive cavity if the thermal contribution is nonnegligible. We also show that the system can undergo a transition from the weak optomechanical coupling regime to the strong optomechanical coupling regime as the incoherent pump strength is varied.Comment: 7 pages, 5 figure

    The quantum optical Josephson interferometer

    Full text link
    The interplay between coherent tunnel coupling and on-site interactions in dissipation-free bosonic systems has lead to many spectacular observations, ranging from the demonstration of number-phase uncertainty relation to quantum phase transitions. To explore the effect of dissipation and coherent drive on tunnel coupled interacting bosonic systems, we propose a device that is the quantum optical analog of a Josephson interferometer. It consists of two coherently driven linear optical cavities connected via a central cavity with a single-photon nonlinearity. The Josephson-like oscillations in the light emitted from the central cavity as a function of the phase difference between two pumping fields can be suppressed by increasing the strength of the nonlinear coupling. Remarkably, we find that in the limit of ultra-strong interactions in the center-cavity, the coupled system maps on to an effective Jaynes-Cummings system with a nonlinearity determined by the tunnel coupling strength. In the limit of a single nonlinear cavity coupled to two linear waveguides, the degree of photon antibunching from the nonlinear cavity provides an excellent measure of the transition to the nonlinear regime where Josephson oscillations are suppressed.Comment: 9 pages, 7 figure

    The quantum optical Josephson interferometer

    Full text link
    The interplay between coherent tunnel coupling and on-site interactions in dissipation-free bosonic systems has lead to many spectacular observations, ranging from the demonstration of number-phase uncertainty relation to quantum phase transitions. To explore the effect of dissipation and coherent drive on tunnel coupled interacting bosonic systems, we propose a device that is the quantum optical analog of a Josephson interferometer. It consists of two coherently driven linear optical cavities connected via a central cavity with a single-photon nonlinearity. The Josephson-like oscillations in the light emitted from the central cavity as a function of the phase difference between two pumping fields can be suppressed by increasing the strength of the nonlinear coupling. Remarkably, we find that in the limit of ultra-strong interactions in the center-cavity, the coupled system maps on to an effective Jaynes-Cummings system with a nonlinearity determined by the tunnel coupling strength. In the limit of a single nonlinear cavity coupled to two linear waveguides, the degree of photon antibunching from the nonlinear cavity provides an excellent measure of the transition to the nonlinear regime where Josephson oscillations are suppressed.Comment: 9 pages, 7 figure

    Anomalous transient amplification of waves in non-normal photonic media

    Full text link
    Dissipation is a ubiquitous phenomenon in dynamical systems encountered in nature because no finite system is fully isolated from its environment. In optical systems, a key challenge facing any technological application has traditionally been the mitigation of optical losses. Recent work has shown that a new class of optical materials that consist of a precisely balanced distribution of loss and gain can be exploited to engineer novel functionalities for propagating and filtering electromagnetic radiation. Here we show a generic property of optical systems that feature an unbalanced distribution of loss and gain, described by non-normal operators, namely that an overall lossy optical system can transiently amplify certain input signals by several orders of magnitude. We present a mathematical framework to analyze the dynamics of wave propagation in media with an arbitrary distribution of loss and gain and construct the initial conditions to engineer such non-normal power amplifiers. Our results point to a new design space for engineered optical systems employed in photonics and quantum optics.Comment: 11 pages, 11 figure

    Strong Electron-Hole Exchange in Coherently Coupled Quantum Dots

    Full text link
    We have investigated few-body states in vertically stacked quantum dots. Due to small inter-dot tunneling rate, the coupling in our system is in a previously unexplored regime where electron-hole exchange is the dominant spin interaction. By tuning the gate bias, we are able to turn this coupling off and study a complementary regime where total electron spin is a good quantum number. The use of differential transmission allows us to obtain unambiguous signatures of the interplay between electron and hole spin interactions. Small tunnel coupling also enables us to demonstrate all-optical charge sensing, where conditional exciton energy shift in one dot identifies the charging state of the coupled partner.Comment: 10 pages, 3 figure

    Interaction-induced mode switching in steady-state microlasers

    Get PDF
    We demonstrate that due to strong modal interactions through cross-gain saturation, the onset of a new lasing mode can switch off an existing mode via a negative power slope. In this process of interaction-induced mode switching (IMS) the two involved modes maintain their identities, i.e. they do not change their spatial field patterns or lasing frequencies. For a fixed pump profile, a simple analytic criterion for the occurrence of IMS is given in terms of their self- and cross-interaction coefficients and non-interacting thresholds, which is verified for the example of a two-dimensional microdisk laser. When the spatial pump profile is varied as the pump power is increased, IMS can be induced even when it would not occur with a fixed pump profile, as we show for two coupled laser cavities. Our findings apply to steady-state lasing and are hence different from dynamical mode switching or hopping. IMS may have potential applications in robust and flexible all-optical switching.Comment: 14 pages, 5 figure
    corecore