476 research outputs found
Exploring quantum quasicrystal patterns: a variational study
We study the emergence of quasicrystal configurations produced purely by
quantum fluctuations in the ground-state phase diagram of interacting bosonic
systems. By using a variational mean-field approach, we determine the relevant
features of the pair interaction potential that stabilize such quasicrystalline
states in two dimensions. Unlike their classical counterpart, in which the
interplay between only two wave vectors determines the resulting symmetries of
the solutions, the quantum picture relates in a more complex way to the
instabilities of the excitation spectrum. Moreover, the quantum quasicrystal
patterns are found to emerge as the ground state with no need of moderate
thermal fluctuations. The study extends to the exploration of the excitation
properties and the possible existence of super-quasicrystals, i.e.
supersolid-like quasicrystalline states in which the long-range non-periodic
density profile coexist with a non-zero superfluid fraction. Our calculations
show that, in an intermediate region between the homogeneous superfluid and the
normal quasicrystal phases, these exotic states indeed exist at zero
temperature. Comparison with full numerical simulations provides a solid
verification of the variational approach adopted in this work.Comment: 10 pages, 6 Figure
New constraints on supersymmetry using neutrino telescopes
We demonstrate that megaton-mass neutrino telescopes are able to observe the signal from long-lived particles beyond the Standard Model, in particular the stau, the supersymmetric partner of the tau lepton. Its signature is an excess of charged particle tracks with horizontal arrival directions and energy deposits between 0.1 and 1 TeV inside the detector. We exploit this previously-overlooked signature to search for stau particles in the publicly available IceCube data. The data shows no evidence of physics beyond the Standard Model. We derive a new lower limit on the stau mass of 320 GeV (95% C.L.) and estimate that this new approach, when applied to the full data set available to the IceCube collaboration, will reach word-leading sensitivity to the stau mass (m_{\tilde{t}}
= 450GeV)
Some interesting features of new massive gravity
A proof that new massive gravity - the massive 3D gravity model proposed by
Bergshoeff, Hohm and Townsend (BHT) - is the only unitary system at the tree
level that can be constructed by augmenting planar gravity through the
curvature-squared terms, is presented. Two interesting gravitational properties
of the BHT model, namely, time dilation and time delay, which have no
counterpart in the usual Einstein 3D gravity, are analyzed as well.Comment: Submitted to Classical and Quantum Gravit
Finite axionic electrodynamics from a new noncommutative approach
Using the gauge-invariant but path-dependent variables formalism, we compute
the static quantum potential for noncommutative axionic electrodynamics (or
axionic electrodynamics in the presence of a minimal length). Accordingly, we
obtain an ultraviolet finite static potential which is the sum of a Yukawa-type
and a linear potential, leading to the confinement of static charges.
Interestingly, it should be noted that this calculation involves no theta
expansion at all. The present result makes manifest the key role played by the
new quantum of length in our analysis.Comment: 14 pages, 2 figures, final version to appear in J.Phys.A, added
comments, reference list update
The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors
Papers on atmospheric and astrophysical diffuse neutrino searches of all
flavors submitted to the 34th International Cosmic Ray Conference (ICRC 2015,
The Hague) by the IceCube Collaboration.Comment: 66 pages, 36 figures, Papers submitted to the 34th International
Cosmic Ray Conference, The Hague 2015, v2 has a corrected author lis
Characterization of the Atmospheric Muon Flux in IceCube
Muons produced in atmospheric cosmic ray showers account for the by far
dominant part of the event yield in large-volume underground particle
detectors. The IceCube detector, with an instrumented volume of about a cubic
kilometer, has the potential to conduct unique investigations on atmospheric
muons by exploiting the large collection area and the possibility to track
particles over a long distance. Through detailed reconstruction of energy
deposition along the tracks, the characteristics of muon bundles can be
quantified, and individual particles of exceptionally high energy identified.
The data can then be used to constrain the cosmic ray primary flux and the
contribution to atmospheric lepton fluxes from prompt decays of short-lived
hadrons.
In this paper, techniques for the extraction of physical measurements from
atmospheric muon events are described and first results are presented. The
multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in
the energy range from the knee to the ankle is derived and found to be
consistent with recent results from surface detectors. The single muon energy
spectrum is determined up to PeV energies and shows a clear indication for the
emergence of a distinct spectral component from prompt decays of short-lived
hadrons. The magnitude of the prompt flux, which should include a substantial
contribution from light vector meson di-muon decays, is consistent with current
theoretical predictions.Comment: 36 pages, 39 figure
- …