23 research outputs found

    Radiation attenuation by single-crystal diamond windows

    Get PDF
    As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leading to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. This article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Postprandial lipemia: factoring in lipemic response for ranking foods for their healthiness

    Full text link

    A structural comparison of supercooled water and intermediate density amorphous ices

    No full text
    New data are presented on neutron diffraction in ultrapure bulk supercooled heavy water measured down to 262 K. The data are analysed in terms of the trends observed in the first sharp diffraction peak (FSDP) parameters, the feature which dominates the measured neutron spectra. The neutron FSDP position, height and width are compared to literature data for supercooled water, water under pressure and to the same parameters obtained for recently discovered intermediate density amorphous ices. It is found that the FSDP parameters in supercooled water and the amorphous ices generally exhibit a similar behaviour, suggesting a new structural regime may occur in deeply supercooled water below Q0 ∌ 1.83 Å-1 (T ∌ 251 K) associated with increased intermediate range ordering. It is argued that this structural regime may be linked to a similar trend in the density which appears when the density is plotted as a function of FSDP position. A detailed comparison of the neutron and X-ray structure factors for supercooled water and intermediate density amorphous ices with the same FSDP positions is also made. The diffraction data show that although the overall general structures are qualitatively very similar, the amorphous ice correlations are considerably sharper and extend to much higher radial distances

    Annealed high-density amorphous ice under pressure

    No full text
    The well-known expansion of water on cooling below 277 K is one of several peculiar properties that could signal a second critical point near 220 K and 0.1 GPa in pressure, deep in the supercooled liquid phase. Evidence for this would be a ïŹrst-order transition line between two distinct supercooled liquids at temperatures below the critical point. As that lies below the minimum crystallization temperature, experimental tests have instead used low- and high-density amorphous ices—LDA and HDA—as proxies for the supercooled liquids. But numerous studies over the past decade have not yielded a clear consensus about the nature of the HDA/LDA transition. Here we identify a previously uncharacterized state of high-density amorphous ice obtained if HDA is annealed at pressures near 2 kbar. The transition between this annealed HDA and LDA is strikingly different from the behaviour found in earlier work, in a way that favours the two-liquid model
    corecore