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As artificial diamond becomes more cost effective it is likely to see increasing

use as a window for sample environment equipment used in diffraction

experiments. Such windows are particularly useful as they exhibit exceptional

mechanical properties in addition to being highly transparent to both X-ray and

neutron radiation. A key application is in high-pressure studies, where diamond

anvil cells (DACs) are used to access extreme sample conditions. However,

despite their utility, an important consideration when using single-crystal

diamond windows is their interaction with the incident beam. In particular, the

Bragg condition will be satisfied for specific angles and wavelengths, leading to

the appearance of diamond Bragg spots on the diffraction detectors but also,

unavoidably, to loss of transmitted intensity of the beam that interacts with the

sample. This effect can be particularly significant for energy-dispersive

measurements, for example, in time-of-flight neutron diffraction work using

DACs. This article presents a semi-empirical approach that can be used to

correct for this effect, which is a prerequisite for the accurate determination of

diffraction intensities.

1. Introduction

When used as a window for scattering experiments, the most

important attributes of diamond are its simple crystal struc-

ture – space group (Fd3m), a = 3.5665 Å (Sato et al., 2002) –

and a relatively low mass absorption for both X-ray and

neutron radiation. For diamond anvil cells (DACs), which are

commonly used with a transmission geometry, the incident

beam must traverse an appreciable thickness of diamond

(typically 1–3 mm) prior to reaching the sample, making

diamond attenuation an important consideration. The effect

of this transit on the intensity of the beam is twofold: (i) mass

absorption, where intensity is lost as it is absorbed by indivi-

dual atoms in the material, and (ii) intensity losses due to

Bragg reflections from the diamond lattice. While the former

effect can be substantial at lower X-ray energies (e.g. Cu K�),

it is relatively simple to apply a geometric correction (Angel,

2004) and, for hard X-rays (>30 keV) and especially neutrons,

the effect can be essentially neglected. However, the latter

effect, that of Bragg losses, has a much more complicated

dependence on both scattering vector (Q) and diamond

microstructure and must be carefully considered (Loveday et

al., 1990). In addition, as observed by Loveday et al. (1990),

the magnitude of the losses is strongly strain dependent. In the

case of a DAC, where the diamond strain is substantial and

varies as a function of sample pressure, the formulation of a

correction is especially challenging.
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In our own work, we have used large-volume neutron DACs

in energy-dispersive neutron diffraction experiments at the

Spallation Neutron Source, Oak Ridge, TN, USA, employing a

transmission geometry (Guthrie, Boehler, Tulk et al., 2013).

We have conducted transmission measurements of the beam

that passes through the DAC, which show clear dips in

intensity due to Bragg losses in the polychromatic neutron

beam. In order to examine the effect of these dips on sample

diffraction intensities, we have conducted these transmission

measurements as a function of sample pressure. The effect was

indeed found to be pressure dependent and sufficient to

modify the relative intensities of Bragg peaks at our highest

pressure (40.4 GPa) by up to �15%. Here, we present our

study and a semi-empirical approach we have developed to

apply a correction for this diamond attenuation effect on the

sample Bragg intensities.

2. Theoretical background

The Ewald construction provides a way both to visualize

which reflections will satisfy the Bragg condition and to

determine the wavevectors of the corresponding diffracted

beam. The construction is made from two components. The

first is the surface that is mapped out by all possible scattering

vectors, Q = kf � ki, where ki and kf are the incident and final

wavevectors, respectively. The vectors ki and kf are defined in

the usual way to be parallel to the incident and diffracted

beams, respectively, and to have magnitude 2�/� where � is

the wavelength of the radiation. For an elastic experiment, the

incident and final wavelengths are equal, so the locus of all

possible Q vectors maps out the surface of a sphere with a

radius of |ki| = |kf| = 2�/� called the Ewald sphere. The second

component of the Ewald construction is the reciprocal lattice

of the material of interest. The reciprocal lattice vectors a*, b*

and c* {determined from the crystal lattice in the normal way

e.g. a� ¼ 2�ðb� cÞ=½a � ðb� cÞ� etc.} define a basis set

A� ¼

a�

b�

c�

0
@

1
A ð1Þ

for the reciprocal lattice. A general reciprocal lattice point is

then described by the vector Gh,k,l which is given by

Gh;k;l ¼ ha� þ kb� þ lc�; ð2Þ

where h, k and l are the conventional Miller indices (Ashcroft

& Mermin, 1976). Following Giacovazzo (1998), this can be

written in matrix form as

Gh;k;l ¼ a�; b�; c�ð Þ

h

k

l

0
@

1
A ¼ A�h; ð3Þ

where h = (h, k, l) is the coordinate matrix.

It can be shown (Ashcroft & Mermin, 1976) that the Bragg

condition for the lattice plane with Miller indices h, k and l is

satisfied when the scattering vector is equal to the reciprocal

lattice vector, i.e. Q = Gh,k,l. If the Ewald sphere is plotted on

the reciprocal lattice such that ki has the correct orientation

then this will be the case when a reciprocal lattice point

intersects the Ewald sphere.

For time-of-flight diffraction, a polychromatic incident

beam is used with the wavelength of an

arriving neutron determined by

measuring its transit time from

moderator to detector. In this case, it is

necessary to consider a continuum of

Ewald spheres that together fill a

volume of reciprocal space bounded by

limiting spheres corresponding to the

shortest and longest wavelength used

(see Fig. 1). Correspondingly, each of

the N reciprocal lattice points in this

entire ‘Ewald volume’ will satisfy the

Bragg condition. For each reflection n =

1, . . . , N, the magnitude of its scattering

vector Qn and, therefore, the corre-

sponding d spacing is invariant with

respect to the orientation of the crystal.

However, as the crystal rotates, the

direction of Qn changes and the wave-

length of the corresponding Bragg

event, �n, also changes (Fig. 1).

The information describing the

orientation of the reciprocal lattice, with

respect to the instrument frame X

(defined in the caption to Fig. 1), and

therefore the incident beam, is

contained in the 3� 3 orientation
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Figure 1
A horizontal slice through reciprocal space showing the Ewald construction. Here, a right-handed
set of Cartesian axes is defined by unit vectors x, y and z, which together constitute a basis set X
whose origin is at the sample position and which is fixed relative to the neutron beam. The vector x
is defined to be parallel to the incident beam while z is vertical (pointing out of the page). The grey
area represents the volume delimited by the minimum and maximum Ewald radii and is static with
respect to X. In the left-hand image, the reciprocal lattice for diamond is shown as solid circles for
the case when the [100] axis (a*) is parallel to the beam, so that a* || x; also, b* || y and c* || z. In this
orientation, the two lattice points ð6; 2; 0Þ and (6; 2; 0Þ (solid red circles) will both satisfy the Bragg
condition at the same wavelength, given by the radius of the Ewald sphere that passes through them.
In the right-hand image, the crystal (and its reciprocal lattice) is rotated by an angle � about z. In
this orientation, ð6; 2; 0Þ and (6; 2; 0) are intercepted by two different Ewald spheres of different
radii, and these reflections will scatter at different wavelengths.



matrix UB. For a crystal system where the lattice parameters

are known, a measurement of the scattering vectors for any

two non-colinear reflections is sufficient to constrain the UB

matrix. In any diffractometer, the same detectors that measure

the sample diffraction signal also inevitably measure the

diamond single-crystal reflections, so it is generally possible to

obtain an orientation matrix for the diamond lattice. We used

the ISAW neutron crystallography software package (Chat-

terjee et al., 2002) to determine UB. When the UB matrix thus

obtained operates on the coordinate matrix h, it returns the

coordinates of the corresponding scattering vector Q in a

frame coincident with X with units of Å�1:

UB hn ¼

Qx

Qy

Qz

0
@

1
A

n

¼ Qn: ð4Þ

Given UB, it is then straightforward to calculate the wave-

length �n at which reflection n will result in a loss in trans-

mitted intensity.

3. Experimental setup

Our measurements were conducted on the dedicated high-

pressure diffractometer SNAP on Beamline 3 of the Spallation

Neutron Source. The geometry of SNAP has been described in

detail previously (Guthrie, Boehler, Molaison et al., 2013).

Here we briefly summarize the basic setup. The neutron beam

emanating from the instrument flight tube is focused by a 2 m

parabolic guide before hitting the sample, which is 15 m from

the moderator. The final beam size is determined by a small

pinhole, formed from hexagonal BN, that is placed �5 mm

upstream of the sample position. The main diffraction detec-

tors are two square, pixelated, Anger cameras (Richards et al.,

2010), which are positioned to the left- and right-hand sides of

the sample, in a horizontal plane, both centred on a scattering

angle 2� of 90	. In our measurements, the DACs are normally

aligned with their load axis parallel to the beam and have a

seat assembly that limits scattering angles to around 90 
 20	

(see Fig. 7 below). In this orientation, the a axes of both

diamond lattices are close to parallel to the incident beam

direction, although we find that a variation of up to �2	 is

possible, depending on details of culet polishing. At present,

the amount by which the plane containing the b and c axes of

the diamonds is rotated about the beam is not controlled and

varies randomly with each loading. Transmitted neutrons are

measured with an ORDELA 3He gas monitor, which has an

efficiency of 5 � 10�3 and an active area of 64 � 50 mm and

which is located �650 mm downstream of the sample.

In order to examine the pressure dependence of the

transmission spectra and to test the correction described

below (in x4), a sample of Ni powder was measured at a series

of increasing pressures. The loading was prepared with 1.5 mm

diamond culets, and with T301 steel gaskets having an initial

thickness of 400 mm, an indent thickness of �150 mm and an

inner diameter of �600 mm. A new cell design with an inte-

grated-membrane force driver was used. A collimator

mounted independently from the cell, and held at a distance of

around 5 mm from the sample, defined a final beam size just

smaller than the sample itself (no gasket scattering was

evident in the diffraction patterns). In addition to the sample

data collections, measurements of a 2 mm-diameter V rod and

its background were collected to normalize the data to the

baseline incident flux profile and detector efficiency.

4. The transmission spectrum and details of the model

The beam monitor measures the integrated counts of the main

beam at a location �650 mm downstream of the sample as a

function of neutron time of flight (TOF). As described below,

the TOF is proportional to the neutron wavelength. As such,

all of the many factors affecting the wavelength dependence of

the beam (such as moderator temperature, attenuation due to

upstream vacuum windows and the efficiency of the focusing

guide) multiply with the intrinsic detector efficiency to give the

measured counts. However, if we take the ratio of the monitor

spectra for a run when the cell is present and a background run

where the cell is removed, all of these factors cancel, leaving

only the attenuation due to the diamonds and the sample. An

example of the resulting spectrum, observed at a low hydraulic

load, is shown in Fig. 2.

This pattern shows the characteristic features of the

diamond attenuation. These are strong losses that appear at

the particular times of flight (or, equivalently, wavelengths)

corresponding to Bragg scattering from both diamond anvils.

Meanwhile, outside these ‘dips’ in intensity, the transmission is

essentially 100%, which is expected as the mass absorption of

carbon for neutron radiation is essentially zero (Sears, 1992).

It is evident that such pronounced dips in incident beam

intensity must also lower the intensity of sample Bragg

reflections measured at those specific wavelengths. As these

intensities contain much of the crystallographic information in
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Figure 2
Transmission spectrum through the DAC (and the Ni sample) at a load of
0.5 tonnes.



a diffraction experiment, it is clearly important to apply a

correction for this effect. Previous measurements (Guthrie,

Boehler, Molaison et al., 2013) used a vanadium sample

measured inside the cell to provide a correction. However, this

approach assumed that the effect is pressure invariant while,

as reported previously (Loveday et al., 1990) and as shown

below, the effect increases with anvil strain.

In principle, the measured pattern in Fig. 2 contains all the

required information to calculate such a correction. However,

there is a complication in that the transmission data are

unavoidably a composite of both diamonds (one upstream and

one downstream of the sample) as the beam must pass through

both on its route to the transmission monitor. Meanwhile, it is

only the attenuation due to the upstream diamond that will

affect the beam that interacts with the sample. Therefore, it

was necessary to develop a procedure to deconvolve the

measured transmission patterns into separate spectra for each

individual diamond anvil. The approach adopted was to

calculate a simulated dip pattern using a model with variable

parameters that could be optimized using a least-squares

approach to give the best fit to the measured transmission

data. From this model, the individual contributions of the

upstream and downstream diamonds can then be extracted.

The list of model parameters includes the intensity (or depth)

of each dip, making the method analogous to a Le Bail-type

profile refinement (Le Bail, 2005) where independent infor-

mation can be extracted from separate phases contributing to

the total measured diffraction pattern.

In order to describe the measured transmission pattern, we

developed a parameterization based on a simple summation of

Gaussians on a constant background of 1. While this func-

tional form has no physical meaning, it has the advantage of

being simple to calculate and, as shown later, gives a good fit

to the measured pattern. The simulated pattern is generated in

an iterative loop that – for each diamond, which we label j = 1

or 2 – runs over all of the N reflections allowed by the diamond

space group (Fd3m) that lie within the Ewald volume (typi-

cally N’ 70 for each diamond). The Gaussian that models the

dip due to reflection n is described by three parameters:

position (�n), width (�n) and area (�n). Finally, all of the

Gaussians for diamond j are scaled by an overall scale factor �j

(this parameter is useful when both diamonds are constrained

to have dip intensities as described below). The corresponding

model for the transmission spectrum for diamond j with

orientation matrix UBj, Tcalc
j � Tcalc

j ð�Þ; is given by

Tcalc
j ð�Þ ¼ 1� �j

XN

n¼1

�n exp �
ð�� �nÞ

2

2�2
n

� �
; ð5Þ

which is calculated at each of the K discrete wavelength values

�K between the maximum and minimum wavelength of the

experimental measurement.

As is evident from equation (5), the model for the trans-

mission spectrum depends on a set of parametric variables,

which are determined as follows. The �n for each of the n

reflections satisfying the Bragg condition for diamond j can be

calculated using the orientation matrix UBj. However, in

initial testing, it was observed that imprecision in the orien-

tation matrix determination (due to both a finite pixel size of

�0.5	 and relatively low sampling angle for reflections: 70 <

2� < 100	) was �1	. Therefore, to take account of this, three

‘adjustment’ angles were introduced as additional variables in

the fit. These angles, labelled �, 	 and �, correspond to

successive rotations of all Qn about x, y and z (as defined in

Fig. 1, which illustrates a rotation of 0, 0, �) and, therefore,

modify the dip wavelengths �n. In addition to these adjustment

angles, it was also necessary to consider the effect of the load

on the diamond lattice, which can compress measurably. In

order to take account of this in the model, a multiplicative

scale factor 
 is introduced to correct the wavelength of a dip,

such that �n ! 
�n (with 
 � 1 when the diamonds are under

load).

The width of a given dip, �n, was taken to have a parabolic

dependence on �, such that �n ¼ "1�n þ "2�
2
n, requiring only

two parameters ("1 and "2) to describe the width of all �140

dips from both diamonds. At the beginning of refinement, the

area of each dip �n is given an initial value equal to the

calculated structure factor squared for the relevant reflection

n, determined using a GSAS (Larson & Von Dreele, 1994)

simulation. During subsequent fitting, the values of �n are free

parameters that can be varied to fit the measured spectrum.

However, they are constrained to be identical for equivalent

reflections.

It is possible to constrain the series of �n to be the same for

both diamonds so only the parameters �j differ between the

two diamonds. This reduces the total number of parameters by

�50% and is a reasonable approximation: allowing for slight

differences in diamond thickness (and therefore total

attenuation) but assuming both diamonds have similar

microstructure (e.g. mosaic spread and strain). Alternatively,

�n can optionally be completely unconstrained for each

diamond, in which case the scale factors �j are set equal to one

and ignored.

The summations in equation (5) run across the N coordinate

vectors h that lie within the ranges 0> h 
 �hmax;

kmax 
 k 
 �kmax; lmax 
 l 
 �lmax; and it was found that the

limiting values of hmax ¼ kmax ¼ lmax ¼ 7 were sufficient to

cover the wavelength range of our measurements on SNAP.

Note that only negative h need be considered in our geometry

since (as seen in Fig. 1) the reciprocal lattice points for all h > 0

are outside of the Ewald volume and do not satisfy the Bragg

condition.

The total transmission, Tcalc, for the case of two diamonds is

then the product of the two individual transmission spectra.

This is scaled by a final scale factor C to match the experi-

mentally measured attenuation. In order that the final scaling

retains 100% transmission where there is no dip, a constant of

1 is subtracted, the scale factor C applied and then the

constant 1 added back. This leads to the following final form

for our empirical model for the total attenuation from both

diamonds:

Tcalc
¼ CðT

calc
1 Tcalc

2 � 1Þ þ 1: ð6Þ
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In order to compare this calculated dip spectrum with the

measured spectrum, it is necessary first to transform the latter

into a function of wavelength. The neutron wavelength is

given by �neut = h/pneut, where h is Planck’s constant and pneut

the neutron momentum. As thermal neutrons are non-relati-

vistic, their momentum is just the product of their mass (mneut)

and velocity. The velocity is simply the distance L from

moderator to detector – which equals the sum of the distance

from moderator to sample (L1) and sample to detector (L2) –

divided by TOF (t). And, for an infinitesimally thin moderator,

where L is wavelength independent, � is exactly proportional

to t. In reality, the moderator has a finite thickness, the effect

of which can be modelled with an additional quadratic term,

giving

�neut ¼
h

mneut

� �
t

L1 þ L2

þ bt2: ð7Þ

Therefore, in addition to the model parameters described

above, L2 and b are also refined in order to give the best fit

between model and data.

In order to determine the best fitting parameters, the resi-

dual �2 is defined as follows:

�2 ¼
1

K

XK

1

ðTmeas � TcalcÞ
2=ð2
Tmeas2

Þ; ð8Þ

where 
Tmeas are the standard deviations associated with the

transmission measurement at each of the K data points at

which is it measured. The best fit is then found by minimizing

�2 with respect to the variables of the model described above.

In our case, minimization is achieved using the FMINCON

routine in the MATLAB Optimization Toolbox (The Math-

Works Inc., Natick, MA, USA), which finds the minimum of a

general constrained nonlinear multivariable function.

This algorithm allows for the possibility of introducing

constraints or restraints by defining upper and lower bounds

for any of the variables in the fit. This utility is important at

higher pressures where broadening increases the overlaps

between adjacent peaks, increasing the likelihood of serial

correlations between fitting parameters. As the peaks are

sharpest in the lowest-pressure measurement, its refinement

can often be run with less stringent constraints. The best fitting

parameters obtained can then be used as initial conditions for

the higher-pressure measurements and, where appropriate,

restrained or fixed. One of the most important restraints is of

the set of peak areas �n. The greatest stability is obtained by

fixing these to be the same for each of the two diamonds and

only refining a single scale factor between these.

Fig. 3 shows the result of applying the model to our lowest-

pressure Ni dataset at 0.8 GPa. The optimal adjustment angles

�, 	 and � were found to be 0.1, �0.7 and �0.2	 for the

upstream diamond and 0.0,�0.9 and�0.3	 for the downstream

diamond. Although there are slight misfits related to peak

shape and width that contribute to a high final �2 of 5.0, the

overall shape of the spectrum is well reproduced.

Once a fit to the full transmission dataset has been obtained,

the attenuation due to each individual diamond can be

extracted. These are shown in Fig. 4, where the different
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Figure 3
Fit to Ni transmission data measured at 0.8 GPa. The measured
transmission data are shown as open circles as a function of wavelength.
The solid red line running through the data points is the calculated dip
pattern from the model described, and below the pattern the residual is
also shown as a solid red line. Above the measured spectrum, the
calculated positions of individual dips due to specific Bragg peaks are
shown as vertical bars. The first few sets of dips are labelled with their hkl
class in curly braces. Low-wavelength dips are unlabelled to retain clarity.

Figure 4
The individual contributions of each diamond, extracted by our empirical
fitting approach, are shown with the total measured attenuation. Vertical
bars above the pattern indicate the wavelength of individual dips. The
first few sets of dips are labelled with their hkl class. Low-wavelength dips
are unlabelled to retain clarity.



orientations of each diamond are seen to lead to distinct

differences in the individual transmission spectra, notably in

the total width of the dip clusters as seen, for example, in the

four {111}-type dips between wavelengths of 2.25 and 2.50 Å

(note that we use curly braces to indicate the set of symmetry-

equivalent reflections within a dip).

We now consider the effect of the diamond attenuation on

the sample Bragg reflection intensities. In TOF diffraction, a

full diffraction pattern is measured in every detector pixel, the

conversion between wavelength (determined from the

measured TOF) and d spacing being given by Bragg’s law. The

detectors on SNAP are highly pixelated and, in general, each

pixel samples the diffraction pattern at a different scattering

angle. Accordingly, the ith pixel, with scattering angle 2�i, will

observe any given sample Bragg reflection, of d spacing d, at a

wavelength of �i = 2dsin�i. In order to maximize counting

statistics, it is standard practice to combine the counts in all of

the pixels within a detector bank. In this process, called ‘time

focusing’, the data in each pixel are transformed from func-

tions of TOF to functions of d spacing, and then summed. This

yields a total diffraction pattern, as a function of d spacing, in

which each Bragg reflection has been averaged over a finite

wavelength range dictated by the distribution of angles 2�i that

has been summed over. As the diamond attenuation affects

only specific wavelengths, time-focused data will typically see

a reduced effect due to diamond attenuation, with only a

subset of pixels – those where the wavelength of a sample

Bragg peak crosses that of a dip – being affected.

For diamond-anvil experiments, the distribution of pixels in

which sample Bragg peaks are measured is complicated by the

need for a software mask that excludes pixels containing

strong anvil peaks and areas of the detector that are blocked

by the cell body. During time focusing, all masked pixels are

ignored and do not contribute to the final integrated diffrac-

tion pattern. The mask created for the Ni dataset is shown

(coloured solid grey) in Fig. 5, where the vertical bars at the

detector edges correspond to the diffraction aperture of the

cell and the irregular shapes within the aperture correspond to

diamond Bragg spots.
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Figure 5
A two-dimensional plot of both detector panels on SNAP, showing in
false colour the summed distribution of detected neutron intensity in the
d-spacing range 0.65–3.1 Å across both detector surfaces. The solid lines
(blue, green and red) indicate the instrument frame, chosen such that the
blue line (extending left from the origin) represents x (and is parallel to
the incident beam) and the green line (extending vertically up from the
origin) represents z. Therefore, the left edge of each panel is at low 2�,
while the right-hand edges are at high 2�. Both detectors are centred on
2� = 90	 and subtend a total angle of �45	. The areas shown in grey have
been masked out and the coloured areas show detected neutron intensity
in false colour, with blue indicating the lowest intensity and yellow/orange
the highest. The black horizontal and vertical lines are gaps in angular
coverage between the nine individual detector modules in each of the
panels.

Figure 6
The time-focused total attenuation correction for our lowest-pressure
data point �0.8 GPa. Under these conditions, attenuation is relatively
weak, with a maximum attenuation of �7%. This figure also illustrates
that, for our geometry, the diamond attenuation has no effect on
reflections measured above d spacings of 2 Å.

Figure 7
(Left) Schematic of diffraction geometry: the beam passes along the axis
of the DAC, being attenuated by the upstream diamond before reaching
the sample and then being attenuated by the downstream diamond before
being measured in the transmission monitor. Diffraction from the sample
and diamonds is measured within the indicated aperture, approximately
70 < 2� < 110	. (Right) Close-up of a single-crystal diamond anvil
illustrating the longest beam path from sample to detector for a
conventional scattering geometry. This path occurs at the largest
scattering angle and for a small element of the sample closest to the
diamond surface on the same side as the exiting beam path and furthest
from the detector. Dimensions are given in millimetres.



In order that the final attenuation function has the correct

weighting of attenuation at each d spacing, it is time focused

using exactly the same mask as the data. The resulting total

attenuation correction, now a function of d spacing, is given in

Fig. 6. Here, we see that the averaging affect of time focusing

‘smears out’ the diamond dip: broadening sharp features in

wavelength space and reducing their depth. Correspondingly,

the maximal effect of the dip on the diffraction pattern, seen at

�1.5 Å in d spacing, is only �6% compared with an effect of

30% reduction in intensity transmitted by the upstream

diamond at the worst affected wavelength of �2.3 Å (see

Fig. 4). Note also that there is no effect above a d spacing of

�2 Å, which corresponds to the d spacing of the highest-

wavelength dip, measured at the lowest scattering angle.

The total attenuation function from the upstream diamond,

Tcalc
1 , converted to d spacing (Fig. 6) can be used directly to

apply a correction to the (also time-focused) diffraction data,

by simple division.

One final aspect of diamond attenuation that we considered

is the possibility of effects on the diffracted as well as incident

beams. Fig. 7 shows the geometry of a standard design of anvil

currently used on SNAP. This immediately shows that the

effect on the diffracted beam will be substantially smaller than

that on the incident beam on account of the path length being

70% less. If we consider the total attenuation of the incident

beam due to the {111}-type dips (shown in Fig. 4), which

reduces the beam by �25%, the maximum effect on the

diffracted beam at the same wavelength would be only an 8%

reduction.

5. High-pressure data

Once a framework to extract the upstream diamond

attenuation and to generate a corresponding correction had

been developed, we then proceeded to examine the effect of

increased pressure on the transmission spectra. Table 1 shows

the conditions of our measurements, while the measured

transmission data themselves are shown in Fig. 8. A marked

increase in the depth of dips is observed as sample pressure

and mechanical strain on the diamonds increases, although,

interestingly, some subsets of reflections, notably the {511}-

type reflections (around 5200 ms) and the {620}-type reflec-

tions (around 4200 ms), appear to be less affected. This may

reflect anisotropy in the mosaic spread of the diamond lattices.

In order to extract the attenuation correction for each

pressure point, the analysis described above in x4 was applied

to each of the datasets in Fig. 8. The resulting attenuation, due

to the upstream diamond only, is shown in Fig. 9. By the

highest load, the dip due to the {111}-type collection of

reflections (clustered between 2.25 and 2.5 Å wavelength) is

seen to absorb a full 75% of the incident beam.

If we consider the set of dips between 2.25 and 2.50 Å,

which are due to the diamond {111} set of reflections, the

general trend of minimum transmission versus load can be

extracted (Fig. 9). The transmission is seen to decrease

approximately linearly as a function of load, reaching only

15% at the highest load. An increase of dip depth with anvil

strain was also observed by Loveday et al. (1990), who found

that the intensity of the dips increased dramatically with

pressure (e.g. the 111 class reflections were reflecting 20–30%

of the incident beam). However, in those measurements, the

effect was mostly saturated by 0.2 GPa, at a force of not more

than 0.012 tonnes (1 t = 1000 kg). This discrepancy may be due

to substantial differences in the experimental setup, for
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Table 1
Experimental parameters for our Ni datasets.

Gas driving pressure was measured by an inline manometer and converted to
force by means of an offline calibration that gave around 11
 1 bar per tonne
(1 bar = 105 Pa). Sample pressures were determined from the refined unit-cell
volumes using the equation of state of nickel reported by Dewaele et al.
(2008).

Gas driving pressure (bar) Force (tonnes) Sample pressure (GPa)

10 0.9 0.8
15 1.3 1.2
20 1.8 3.7
25 2.2 9.8
30 2.7 13.7
35 3.2 17.2
40 3.6 20.7
45 4.0 24.1
50 4.5 27.5
55 5.0 30.9
60 5.4 34.3
65 5.8 37.5
70 6.3 40.4

Figure 8
Total transmission spectra, as a function of TOF, with increasing force.
The full measured spectra are shown in the upper panel, while the lower
panel shows the low-TOF region.



example source divergences and cell sizes. Also observed is

broadening of the dips and shifting of position as the applied

force strains the diamond crystal lattice.

The refined setting angles for both diamonds are shown in

Fig. 10. These are seen to vary continuously with pressure. This

might be due to slight mechanical deformation of the cell as

the load increases.

As a final step, the extracted transmission of the upstream

diamond is converted to d spacing to provide the correction

applicable to the sample diffraction data. This is shown in

Fig. 11, which gives the final correction for each pressure

measurement (as described previously, the same detector

mask as used for focusing the sample diffraction patterns was

used to generate the attenuation corrections). The correction

is seen to have a relatively complex shape, with a maximum

effect of around 25% at the highest load of 6.3 tonnes.

6. Test of correction using diffraction detector

Our fitting approach provides a means to decouple the

attenuating effects of the two diamonds in order to extract the

effect of only the upstream diamond. However, it is important

to confirm that this procedure yields an accurate correction for

the attenuation experienced by the sample. An independent

means to examine this is to directly look for a wavelength-

dependent dip in the intensity of Bragg peaks due to the

sample as measured in the main diffraction detector banks. To

do this, we examined our highest-pressure data set, where the

attenuation effect is greatest, and

looked at how Bragg intensity varies

with angle (Fig. 12).

The longest and second longest

d-spacing reflections from Ni are the

111 and 200 reflections, respectively,

found at 1.93 and 1.67 Å d spacing at

this pressure. As seen in Fig. 12, both

reflections transit through the TOF/�
of the dip with increasing angle. For all

angles above �81	, 111 is completely

unaffected by the dip and its intensity

can be used to normalize that of 200 as

it enters, then exits, the dip. By fitting

Gaussian peak shapes to the individual

TOF spectra at each scattering angle,

we extracted the ratio of intensities, to

look for direct evidence of a reduction

and then recovery of the ratio as 200

enters and then exits the dip. As shown

in Fig. 13, we see that the ratio does

indeed drop as 200 enters the dip and

recover again as it exits the dip on the

other side. The apparent greater width

of the dip observed in the diffraction

detectors is attributed to a miscalibra-

tion of the relative angular position of

the detector modules.

7. Rietveld analysis of attenuation
correction

Our reference sample of Ni powder

was chosen because it is a strong scat-

terer and has Bragg peaks at appro-

priate d spacings to sample the

attenuation. In addition, it retains its

face-centred-cubic structure across our

full pressure range so that the relative

peak intensities should be constant

(apart from systematic effects due to

changes in thermal motion). To confirm

this, each of the datasets listed in

research papers

J. Appl. Cryst. (2017). 50, 76–86 M. Guthrie et al. � Radiation attenuation by single-crystal diamond windows 83

Figure 10
Adjustment angles for upstream (left) and downstream (right) diamonds as a function of load.

Figure 9
(Left) Fitted attenuation due to the upstream diamond only as a function of increasing load. As seen
in the total measured pattern, the depth of dips increases systematically with pressure. (Right) The
minimum transmission of the {111} dip as a function of load.



Table 1 was subject to a Rietveld refinement to examine the

efficacy of the correction.

Prior to sample data collection, a 500 mm steel pin was

placed at the sample position and a dataset measured. Bragg

peaks from the known structure of the steel were used to

calibrate the TOF–� conversion for the pixels in the detector.

Subsequently, a 610 mm-diameter vanadium pin and a separate

background measurement were taken to correct for various

systematic �-dependent effects, including incident spectrum

profile, detector efficiency etc. This yielded a V correction

function that could be applied to the sample data to normalize

for these effects.

For each Ni dataset, a mask was applied to remove the

single-crystal diamond peaks from the background.1 After

application of the mask, the data were focused as described in

x4 to give a diffraction pattern as a function of d spacing.

Subsequently, a smooth d-dependent background function

was subtracted from the Ni datasets, which were then divided

by the V correction function. A correction for the attenuation

due to the steel gasket (Guthrie, Boehler, Molaison et al.,

2013) was calculated but was found to be negligible. In addi-

tion, no attenuation correction was applied to the V

measurement, owing to the small diameter of the pin (calcu-

lations indicate that the effect is �2% across the entire

d-spacing range that was refined). The resulting datasets are

fully corrected for all instrumental effects other than the

diamond attenuation. These were refined to give a reference

and, subsequently, the diamond attenuation correction

described above was applied and the data re-refined. The
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Figure 11
Final upstream diamond attenuation correction, after conversion to d
spacing, as a function of increasing load.

Figure 12
False colour image generated by the Mantidplot software package (Taylor
et al., 2012), showing the scattered intensity as a function of 2� versus
TOF, measured in the 90	 SNAP diffraction banks. The 111 and 200 Ni
diffraction peaks sweep across the image at an oblique angle. The TOF
regions affected by Bragg dips are clearly visible as the radiation lost in
transmission is redistributed as additional background (probably due to
secondary �-radiation). Correspondingly, the dip due to the {111}
diamond reflections is seen as a positive band of intensity running
vertically up the image, with the outline marked by vertical dashed lines
(note that the TOF of this region differs from that of the transmission
data as the diffraction detectors have a different secondary path length
compared to the transmission monitor). The saturated spots indicated by
arrows are single-crystal diamond diffraction spots. The dark horizontal
bands at 81 and 98	 are due to gaps in angular coverage between
individual detector modules (see also Fig. 5). The loss of sample Bragg
intensity at the highest and lowest angles is due to the limited angular
window of the cell.

Figure 13
The ratio of intensities of the 200 and 111 Bragg reflections from Fig. 12,
with the x axis converted from TOF to wavelength to compare with the
calculated attenuation. Dashed vertical lines indicate where 200 enters
and exits the dip. The continuous red line is the calculated attenuation
scaled to the 200/111 ratio at wavelengths unaffected by the dip.

1 The same mask used for the Ni sample was also applied to the corrected V
data sets in order to correctly account for the angular distribution of
unmasked pixels and differing efficiency of individual detector pixels.



difference between the two refinements encapsulates the

effect of the diamond dips.

All datasets were refined using the GSAS (Larson & Von

Dreele, 1994) and EXPGUI (Toby, 2001) Reitveld software

packages. The known structure of nickel (space group: Fm3m

with an Ni atom at 0, 0, 0) was used, for which the only

refinable structural parameters were the lattice parameter a

and an isotropic atomic displacement parameter for the Ni

atom. In addition to these structural parameters, both Gaus-

sian and Lorentzian peak shape and three background para-

meters were required to describe the pattern. During

refinements, a small amount of preferred orientation was

observed, which increased with pressure. This was fitted with a

spherical harmonic model that introduced a single additional

parameter. In total this gave nine parameters in the fit. The

fitting range was defined so that all diffraction patterns had the

same number of observed reflections, which were all of those

including and above the {422} class of reflections. Pressure was

determined from the refined lattice parameter using the

Deweale et al. (2008) equation of state.

First, we compared the quality of fit, measured in the

refinement by the integrated weighted residual �2, which is

shown in Fig. 14.

While the diamond attenuation has very little effect at the

lowest pressures, it increases rapidly with pressure and,

consequently, we see a substantial improvement in fit after the

attenuation correction is applied. In addition, the trend of �2

with pressure appears to show more scatter without the

attenuation correction, as the refinement attempts to fit the

affected reflections using other available parameters. This is

illustrated in the refined texture index, which quantifies the

preferred orientation. Although the amount of preferred

orientation is quite small, it is systematically larger without the

attenuation correction, leading to an overestimate of the

texture (Fig. 14).

8. Discussion

The effect of applied load on the depth and width of the dips

may have a number of origins. For example, significant

primary extinction is expected, which returns radiation from

the diffracted to the incident beam with a phase shift of �,

cancelling some part of the radiation as it travels through the

diamond. Applying load will induce strain gradients in the

diamonds which will reduce such extinction and increase the

intensity of the beam diffracted by the diamond and hence the

depth of the dip. Strain gradients in the diamond will also

increase the acceptance angle of the diamond, determined by

measuring a rocking curve, which increases the proportion of

the incident fan of radiation that the diamond diffracts. A

precise model of how the depth of the dip varies with load is

beyond the scope of this paper – since we are using the

measured transmission – but it would be of interest to

understand why the depth of some classes of dip are more

strongly load dependent.

9. Summary

In summary, we have developed a methodology to correct

polychromatic TOF diffraction data measured inside diamond

anvil cells for the effect of diamond attenuation. This semi-

empirical approach uses measurement of total transmitted

intensities recorded by a neutron monitor that is downstream

of the sample cell. These data are then fitted with a model,

allowing the separate extraction of the upstream diamond

contribution. We have validated the resulting correction by

direct measurement of the attenuation effect on Bragg

intensities as they scan across the diffraction detectors.

We also explored the effect of the final attenuation

correction on the measurement of Bragg intensities from a

reference sample of Ni compressed to �40 GPa. As the Ni

structure is known, the quality of fit is a measure of how

effectively the effect of diamond dips is mitigated by applying

the correction. We found substantial improvements of up to

25% in the �2 value of the fit after applying the dip correction,

indicating that, after correction, reliable Bragg intensities can

be extracted.
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