29 research outputs found

    Special Needs to Prescribe Exercise Intensity for Scientific Studies

    Get PDF
    There is clear evidence regarding the health benefits of physical activity. These benefits follow a dose-response relationship with a particular respect to exercise intensity. Guidelines for exercise testing and prescription have been established to provide optimal standards for exercise training. A wide range of intensities is used to prescribe exercise, but this approach is limited. Usually percentages of maximal oxygen uptake (VO2) or heart rate (HR) are applied to set exercise training intensity but this approach yields substantially variable metabolic and cardiocirculatory responses. Heterogeneous acute responses and training effects are explained by the nonuniform heart rate performance curve during incremental exercise which significantly alters the calculations of %HRmax and %HRR target HR data. Similar limitations hold true for using %VO2max and %VO2R. The solution of these shortcomings is to strictly apply objective submaximal markers such as thresholds or turn points and to tailor exercise training within defined regions

    Atypical blood glucose response to continuous and interval exercise in a person with type 1 diabetes: a case report

    Get PDF
    BackgroundTherapy must be adapted for people with type 1 diabetes to avoid exercise-induced hypoglycemia caused by increased exercise-related glucose uptake into muscles. Therefore, to avoid hypoglycemia, the preexercise short-acting insulin dose must be reduced for safety reasons. We report a case of a man with long-lasting type 1 diabetes in whom no blood glucose decrease during different types of exercise with varying exercise intensities and modes was found, despite physiological hormone responses.Case presentationA Caucasian man diagnosed with type 1 diabetes for 24 years performed three different continuous high-intensity interval cycle ergometer exercises as part of a clinical trial (ClinicalTrials.gov identifier NCT02075567). Intensities for both modes of exercises were set at 5% below and 5% above the first lactate turn point and 5% below the second lactate turn point. Short-acting insulin doses were reduced by 25%, 50%, and 75%, respectively. Measurements taken included blood glucose, blood lactate, gas exchange, heart rate, adrenaline, noradrenaline, cortisol, glucagon, and insulin-like growth factor-1. Unexpectedly, no significant blood glucose decreases were observed during all exercise sessions (start versus end, 12.97 ± 2.12 versus 12.61 ± 2.66 mmol L−1, p = 0.259). All hormones showed the expected response, dependent on the different intensities and modes of exercises.ConclusionsPeople with type 1 diabetes typically experience a decrease in blood glucose levels, particularly during low- and moderate-intensity exercises. In our patient, we clearly found no decline in blood glucose, despite a normal hormone response and no history of any insulin insensitivity. This report indicates that there might be patients for whom the recommended preexercise therapy adaptation to avoid exercise-induced hypoglycemia needs to be questioned because this could increase the risk of severe hyperglycemia and ketosis

    Different Heart Rate Patterns During Cardio-Pulmonary Exercise (CPX) Testing in Individuals With Type 1 Diabetes

    Get PDF
    To investigate the heart rate during cardio-pulmonary exercise (CPX) testing in individuals with type 1 diabetes (T1D) compared to healthy (CON) individuals. Fourteen people (seven individuals with T1D and seven CON individuals) performed a CPX test until volitional exhaustion to determine the first and second lactate turn points (LTP1 and LTP2), ventilatory thresholds (VT1 and VT2), and the heart rate turn point. For these thresholds cardio-respiratory variables and percentages of maximum heart rate, heart rate reserve, maximum oxygen uptake and oxygen uptake reserve, and maximum power output were compared between groups. Additionally, the degree and direction of the deflection of the heart rate to performance curve (kHR) were compared between groups. Individuals with T1D had similar heart rate at LTP1 (mean difference) −11, [(95% confidence interval) −27 to 4 b.min−1], at VT1 (−12, −8 to 33 b.min−1) and at LTP2 (−7, −13 to 26 b.min−1), at VT2 (−7, −13 to 28 b.min−1), and at the heart rate turn point (−5, −14 to 24 b.min−1) (p = 0.22). Heart rate expressed as percentage of maximum heart rate at LTP1, VT1, LTP2, VT2 and the heart rate turn point as well as expressed as percentages of heart rate reserve at LTP2, VT2 and the heart rate turn point was lower in individuals with T1D (p < 0.05). kHR was lower in T1D compared to CON individuals (0.11 ± 0.25 vs. 0.51 ± 0.32, p = 0.02). Our findings demonstrate that there are clear differences in the heart rate response during CPX testing in individuals with T1D compared to CON individuals. We suggest using submaximal markers to prescribe exercise intensity in people with T1D, as the heart rate at thresholds is influenced by kHR

    Impacts of 1.5°C Global Warming on Natural and Human Systems

    Get PDF
    An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate povert

    Intensity- and Duration-Based Options to Regulate Endurance Training

    No full text
    The regulation of endurance training is usually based on the prescription of exercise intensity. Exercise duration, another important variable of training load, is rarely prescribed by individual measures and mostly set from experience. As the specific exercise duration for any intensity plays a substantial role regarding the different kind of cellular stressors, degree, and kind of fatigue as well as training effects, concepts integrating the prescription of both intensity and duration within one model are needed. An according recent approach was the critical power concept which seems to have a physiological basis; however, the mathematical approach of this concept does not allow applying the three zones/two threshold model of metabolism and its different physiological consequences. Here we show the combination of exercise intensity and duration prescription on an individual basis applying the power/speed to distance/time relationship. The concept is based on both the differentiation of intensities by two lactate or gas exchange variables derived turn points, and on the relationship between power (or velocity) and duration (or distance). The turn points define three zones of intensities with distinct acute metabolic, hormonal, and cardio-respiratory responses for endurance exercise. A maximal duration exists for any single power or velocity such as described in the power-duration relationship. Using percentages of the maximal duration allows regulating fatigue, recovery time, and adaptation for any single endurance training session. Four domains of duration with respect to induced fatigue can be derived from maximal duration obtained by the power-duration curve. For any micro-cycle, target intensities and durations may be chosen on an individual basis. The model described here is the first conceptual framework of integrating physiologically defined intensities and fatigue related durations to optimize high-performance exercise training

    Acute and Post-Exercise Physiological Responses to High-Intensity Interval Training in Endurance and Sprint Athletes

    No full text
    The purpose of the presented study was to compare acute and post-exercise differences in cardiorespiratory, metabolic, cardiac autonomic, inflammatory and muscle damage responses to high-intensity interval exercise (HIIT) between endurance and sprint athletes. The study group consisted of sixteen highly-trained males (age 22.1 ± 2.5 years) participating in endurance (n = 8) or sprint (n = 8) sporting events. All the participants underwent three exercise sessions: short HIIT (work interval duration 30s), long HIIT (3min) and constant load exercise (CE). The exercise interventions were matched for mean power, total time and in case of HIIT interventions also for work-to-relief ratio. The acute cardiorespiratory (HR, V̇O2, RER) and metabolic (lactate) variables as well as the post-exercise changes (up to 3 h) in the heart rate variability, inflammation (interleukin-6, leucocytes) and muscle damage (creatine kinase, myoglobin) were monitored. Endurance athletes performed exercise interventions with moderately (CE) or largely (both HIIT modes) higher mean V̇O2. These differences were trivial/small when V̇O2 was expressed as a percentage of V̇O2max. Moderately to largely lower RER and lactate values were found in endurance athletes. Markers of cardiac autonomic regulation, inflammation and muscle damage did not reveal any considerable differences between endurance and sprint athletes. In conclusions, endurance athletes were able to perform both HIIT formats with increased reliance on aerobic metabolic pathways although exercise intensity was identical in relative terms for all the participants. However, other markers of the acute and early post-exercise physiological response to these HIIT interventions indicated similarities between endurance and sprint athletes

    Effects of Different Durations at Fixed Intensity Exercise on Internal Load and Recovery&mdash;A Feasibility Pilot Study on Duration as an Independent Variable for Exercise Prescription

    No full text
    Duration is a rarely investigated marker of exercise prescription. The aim of this study was to test the feasibility of the methodological approach, assessing effects of different duration constant-load exercise (CLE) on physiological responses (internal load) and recovery kinetics. Seven subjects performed an incremental exercise (IE) test, one maximal duration CLE at 77.6 &plusmn; 4.8% V&#729;O2max, and CLE&rsquo;s at 20%, 40%, and 70% of maximum duration. Heart rate (HR), blood lactate (La), and glucose (Glu) concentrations were measured. Before, 4, 24, and 48 h after CLE&rsquo;s, submaximal IE tests were performed. HR variability (HRV) was assessed in orthostatic tests (OT). Rating of perceived exertion (RPE) was obtained during all tests. CLE&rsquo;s were performed at 182 &plusmn; 27 W. HRpeak, Lapeak, V&#729;Epeak, and RPEpeak were significantly higher in CLE&rsquo;s with longer duration. No significant differences were found between CLE&rsquo;s for recovery kinetics for HR, La, and Glu in the submaximal IE and for HRV or OT. Despite no significant differences, recovery kinetics were found as expected, indicating the feasibility of the applied methods. Maximum tests and recovery tests closer to CLE&rsquo;s termination are suggested to better display recovery kinetics. These findings are a first step to prescription of exercise by both intensity and duration on an individual basis

    How to Regulate the Acute Physiological Response to “Aerobic” High-Intensity Interval Exercise

    No full text
    The acute physiological processes during “aerobic” high-intensity interval exercise (HIIE) and their regulation are inadequately studied. The main goal of this study was to investigate the acute metabolic and cardiorespiratory response to long and short HIIE compared to continuous exercise (CE) as well as its regulation and predictability. Six healthy well-trained sport students (5 males, 1 female; age: 25.7 ± 3.1 years; height: 1.80 ± 0.04 m; weight: 76.7 ± 6.4 kg; VO2max: 4.33 ± 0.7 l·min-1) performed a maximal incremental exercise test (IET) and subsequently three different exercise sessions matched for mean load (Pmean) and exercise duration (28 min): 1) long HIIE with submaximal peak workloads (Ppeak = power output at 95 % of maximum heart rate), peak workload durations (tpeak) of 4 min, and recovery durations (trec) of 3 min, 2) short HIIE with Ppeak according to the maximum power output (Pmax) from IET, tpeak of 20 s, and individually calculated trec (26.7 ± 13.4 s), and 3) CE with a target workload (Ptarget) equating to Pmean of HIIE. In short HIIE, mean lactate (Lamean) (5.22 ± 1.41 mmol·l-1), peak La (7.14 ± 2.48 mmol·l-1), and peak heart rate (HRpeak) (181.00 ± 6.66 b·min-1) were significantly lower compared to long HIIE (Lamean: 9.83 ± 2.78 mmol·l-1; Lapeak: 12.37 ± 4.17 mmol·l-1, HRpeak: 187.67 ± 5.72 b·min-1). No significant differences in any parameters were found between short HIIE and CE despite considerably higher peak workloads in short HIIE. The acute metabolic and peak cardiorespiratory demand during “aerobic” short HIIE was significantly lower compared to long HIIE and regulable via Pmean. Consequently, short HIIE allows a consciously aimed triggering of specific and desired or required acute physiological responses
    corecore