41 research outputs found

    Accuracy of electrocardiographic criteria for atrial enlargement: validation with cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anatomic atrial enlargement is associated with significant morbidity and mortality. However, atrial enlargement may not correlate with clinical measures such as electrocardiographic (ECG) criteria. Past studies correlating ECG criteria with anatomic measures mainly used inferior M-mode or two-dimensional echocardiographic data. We sought to determine the accuracy of the ECG to predict anatomic atrial enlargement as determined by volumetric cardiovascular magnetic resonance (CMR).</p> <p>Methods</p> <p>ECG criteria for left (LAE) and right atrial enlargement (RAE) were compared to CMR atrial volume index measurements for 275 consecutive subjects referred for CMR (67% males, 51 ± 14 years). ECG criteria for LAE and RAE were assessed by an expert observer blinded to CMR data. Atrial volume index was computed using the biplane area-length method.</p> <p>Results</p> <p>The prevalence of CMR LAE and RAE was 28% and 11%, respectively, and by any ECG criteria was 82% and 5%, respectively. Though nonspecific, the presence of at least one ECG criteria for LAE was 90% sensitive for CMR LAE. The individual criteria P mitrale, P wave axis < 30°, and negative P terminal force in V1 (NPTF-V1) > 0.04s·mm were 88–99% specific although not sensitive for CMR LAE. ECG was insensitive but 96–100% specific for CMR RAE.</p> <p>Conclusion</p> <p>The presence of at least one ECG criteria for LAE is sensitive but not specific for anatomic LAE. Individual criteria for LAE, including P mitrale, P wave axis < 30°, or NPTF-V1 > 0.04s·mm are highly specific, though not sensitive. ECG is highly specific but insensitive for RAE. Individual ECG P wave changes do not reliably both detect and predict anatomic atrial enlargement.</p

    Association of Left Atrial Function Index with Atrial Fibrillation and Cardiovascular Disease: The Framingham Offspring Study

    Get PDF
    Background: Left atrial (LA) size, a marker of atrial structural remodeling, is associated with increased risk for atrial fibrillation (AF) and cardiovascular disease (CVD). LA function may also relate to AF and CVD, irrespective of LA structure. We tested the hypothesis that LA function index (LAFI), an echocardiographic index of LA structure and function, may better characterize adverse LA remodeling and predict incident AF and CVD than existing measures. Methods and Results: In 1786 Framingham Offspring Study eighth examination participants (mean age, 66±9 years; 53% women), we related LA diameter and LAFI (derived from the LA emptying fraction, left ventricular outflow tract velocity time integral, and indexed maximal LA volume) to incidence of AF and CVD on follow‐up. Over a median follow‐up of 8.3 years (range, 7.5–9.1 years), 145 participants developed AF and 139 developed CVD. Mean LAFI was 34.5±12.7. In adjusted Cox regression models, lower LAFI was associated with higher risk of incident AF (hazard ratio=3.83, 95% confidence interval=2.23–6.59, lowest [Q1] compared with highest [Q4] LAFI quartile) and over 2‐fold higher risk of incident CVD (hazard ratio=2.20, 95% confidence interval=1.32–3.68, Q1 versus Q4). Addition of LAFI, indexed maximum LA volume, or LA diameter to prediction models for AF or CVD did not significantly improve model discrimination for either outcome. Conclusions: In our prospective investigation of a moderate‐sized community‐based sample, LAFI, a composite measure of LA size and function, was associated with incident AF and CVD. Addition of LAFI to the risk prediction models for AF or CVD, however, did not significantly improve their performance
    corecore