Chuang et al. Journal of Cardiovascular Magnetic Resonance 2013, **15**(Suppl 1):P256 http://www.jcmr-online.com/content/15/S1/P256

POSTER PRESENTATION

Normal reference values for thoracic and abdominal aorta and main pulmonary artery dimensions by cardiovascular magnetic resonance: the Framingham heart study

Michael L Chuang^{1*}, Philimon Gona¹, Carol J Salton², Connie W Tsao^{1,2}, Susan B Yeon², Christopher J O'Donnell¹, Warren J Manning²

From 16th Annual SCMR Scientific Sessions San Francisco, CA, USA. 31 January - 3 February 2013

Background

Enlargement of the aorta or main pulmonary artery (MPA) is associated with cardiopulmonary disease, and an increased MPA-to-ascending aorta ratio is associated with pulmonary hypertension. We sought to determine mean and upper 90th percentile (p90) diameters of the thoracic and abdominal aorta and MPA in a longitudin-ally-followed adult cohort without clinical cardiopulmonary disease.

Methods

1794 Framingham Heart Study Offspring cohort members (65±9 yrs, 844 men) underwent ECG-gated, free breathing T2-weighted black-blood TSE at 1.5T (Philips Gyroscan NT, TR=3RR, TE=45ms, trigger delay=75ms (thorax) or 125ms (abdomen), 1.03x0.64-mm² in-plane resolution, THK=5mm, Gap=5 (abdomen) or 10mm (thorax)). Ascending (ASC) and descending thoracic (DTA) aortic and MPA diameters were measured at MPA-bifurcation level, abdominal (ABD) aorta was measured 5 mm above renal artery origins. We determined sex-specific mean, SD and p90 values for vessel diameters and MPA/ASC ratio in a healthy referent group free of hypertension (SBP≥140 or DBP≥90 mmHg or on medication), obesity (body mass index \ge 30 kg/m²), emphysema, prevalent myocardial infarction or heart failure, and any smoking history. Men were compared to women using 2-sample t test. We also indexed vessel diameters to sex-and-vessel specific allometric powers of

¹NHLBI's Framingham Heart Study, Framingham, MA, USA

Full list of author information is available at the end of the article

height (HT^{β}) ; β 's were determined by linear regression of log(HT) to log(diameter). Indexation to HT^{β} was selected since indexation to HT or body surface area (BSA) resulted in significant inverse correlations of vessel diameters to HT and/or BSA.

Results

370 Offspring (62±9 yrs) met referent-group criteria. Men had greater aortic (at all levels) and MPA diameters than women both before and after indexation to HT^{β} . The β values corresponding to ASC, DTA, ABD and MPA were 0.22, 0.30, 0.11 and 0.29, respectively, in men, and 0.10, 0.39, 0.37 and 0.48 in women. Vessel diameters indexed to HT^{β} were correlated with neither HT nor BSA. The MPA/ASC ratio did not differ between sexes. The mean±SD and upper limits (p90) for raw and indexed vessel diameters and MPA/ASC ratio are shown (Table).

Conclusions

We present CMR-derived sex-specific upper 90th percentile values for aortic and MPA diameters and MPA/ASC ratio derived from a cohort of longitudinally-followed, community dwelling adults free of clinical cardiac and pulmonary disease. These p90 thresholds may be useful for identification of cardiopulmonary pathology.

Funding

Supported in part by grant RO1 AG17509 and by subcontract N01-HC-38038 from the National Institutes of Health.

© 2013 Chuang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table 1

	Men	p90 (Men)	Women	p90 (Women)
ASC, mm	31.1±2.9	34.9	28.5±3.1	31.8
DTA, mm	23.0±2.0	25.3	20.2±1.8	22.7
ABD, mm	17.9±1.6	20.0	15.3±1.5	17.3
MPA, mm	23.4±2.9	26.6	21.3±3.1	24.2
ASC/HT ^β	27.5±2.6	30.9	27.1±2.9	30.4
DTA/ HT^{β}	19.4±1.7	21.4	16.7±1.5	18.6
ABD/ HT ^B	16.8±1.5	18.9	12.8±1.3	14.4
MPA/ ΗΤ ^β	19.9±2.5	22.5	16.9±2.4	19.1
MPA/ASC	0.76±0.10	0.88	0.75±0.15	0.87

Author details

¹NHLBI's Framingham Heart Study, Framingham, MA, USA. ²Cardiovascular Division, Beth Israel Deaconess Medical Center, Boston, MA, USA.

Published: 30 January 2013

doi:10.1186/1532-429X-15-S1-P256

Cite this article as: Chuang et al.: Normal reference values for thoracic and abdominal aorta and main pulmonary artery dimensions by cardiovascular magnetic resonance: the Framingham heart study. Journal of Cardiovascular Magnetic Resonance 2013 15(Suppl 1):P256.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central