173 research outputs found

    A critical review on sustainable biochar system through gasification: energy and environmental applications

    Get PDF
    This review lays great emphasis on production and characteristics of biochar through gasification. Specifically, the physicochemical properties and yield of biochar through the diverse gasification conditions associated with various types of biomass were extensively evaluated. In addition, potential application scenarios of biochar through gasification were explored and their environmental implications were discussed. To qualitatively evaluate biochar sustainability through the gasification process, all gasification products (i.e., syngas and biochar) were evaluated via life cycle assessment (LCA). A concept of balancing syngas and biochar production for an economically and environmentally feasible gasification system was proposed and relevant challenges and solutions were suggested in this review

    Towards practical application of gasification: a critical review from syngas and biochar perspectives

    Get PDF
    Syngas and biochar production are mainly influenced by temperature, feedstock properties, gasifying agent, pressure, and the mass ratio between gasifying agent and feedstock with temperature being the most significant factor. Increasing temperature generally promotes syngas production while suppressing biochar production. The selection of gasifiers (fixed bed, fluidized bed, and entrained flow) is highly dependent on scale requirement (e.g., volume of feedstock and energy demand), feedstock characteristics (e.g., moisture and ash content), and the quality of syngas and biochar. Updraft fixed bed gasifiers are suitable for the feedstocks with a moisture content up to 50 wt.%. High ash feedstocks such as Indian coal, dried sewage sludge, and municipal solid waste that are not suitable for fixed bed gasifiers, have been successfully gasified in bubbling fluidized bed reactors. Woody biomass is not suitable for entrained flow gasifiers unless specialized feeding methods are employed such as wood torrefaction and grinding followed by the existing feeding methods for pulverized coals, biomass-oil biochar slurry preparation followed by pumping, wood or torrefied wood slurry preparation followed by pumping, etc. Syngas and biochar can potentially be contaminated by NH3, H2S, and tar, which can be removed using catalysts (e.g., Ni-based), metal oxides-based sorbents, and thermal and catalytic cracking methods. Existing syngas and biochar upgrading methods suffered from various problems such as economic infeasibility, limited productivity, and fouling, and future syngas and biochar upgrading methods should be aimed to have the features of reliability, security, affordability, and sustainability, towards the practical, large-scale production of syngas- and biochar-based products. One potential solution is to develop integrated systems by combining biochar upgrading and application with syngas upgrading, which warrants an integrated perspective based on both life cycle assessment and economic analysis

    A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies

    Get PDF
    Hydrogen sourced from energy recovery processes and conversion of waste materials is a method of providing both a clean fuel and a sustainable waste management alternative to landfill and incineration. The question is whether waste-to–hydrogen can become part of the zero-carbon future energy mix and serve as one of the cleaner hydrogen sources which is economically viable and environmentally friendly. This work critically assessed the potential of waste as a source of hydrogen production via various thermochemical (gasification and pyrolysis) and biochemical (fermentation and photolysis) processes. Research has shown hydrogen production yields of 33.6 mol/kg and hydrogen concentrations of 82% from mixed waste feedstock gasification. Biochemical methods such as fermentation can produce hydrogen up to 418.6 mL/g. Factors including feedstock quality, process requirements and technology availability were reviewed to guide technology selection and system design. Current technology status and bottlenecks were discussed to shape future development priorities. These bottlenecks include expensive production and operation processes, heterogeneous feedstock, low process efficiencies, inadequate management and logistics, and lack of policy support. Improvements to hydrogen yields and production rates are related to feedstock processing and advanced energy efficiency processes such as torrefaction of feedstock which has shown thermal efficiency of gasification up to 4 MJ/kg. This will affect the economic feasibility and concerns around required improvements to bring the costs down to allow waste to viewed as a serious competitor for hydrogen production. Recommendations were also made for financially competitive waste-to-hydrogen development to be part of a combined solution for future energy needs

    Green remediation of Cd and Hg contaminated soil using humic acid modified montmorillonite: immobilization performance under accelerated ageing conditions

    Get PDF
    Solidification/Stabilization (S/S) is an effective way to immobilize toxic metals in contaminated soil. However, utilization of ordinary Portland cement (PC) in this process has raised environmental concerns owing to the high carbon footprint from PC manufacturing and the risk of toxic element leaching in the long term. Hence there is an urgent need to seek for “green” immobilization approaches with long-term stability. In this study, a clay-based material, humic acid modified montmorillonite (HA-Mont) was applied to a Cd and Hg contaminated soil. Field emission scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (FESEM/EDS), N2 adsorption-desorption, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analyses were performed to investigate the characteristics of this material. Compared to the soil without any treatment, dosage of 5% HA-Mont could effectively reduce Cd and Hg concentrations by 94.1% and 93.0%, respectively and to below the regulatory limits in the TCLP (Toxicity Characteristic Leaching Procedure) leachates. Compared to the soil treated with virgin montmorillonite, HA modification resulted in the reduction of leachate concentrations of Cd and Hg by 69.5% and 65.9%, respectively. Long-term immobilization performance of the HA-Mont treatment was examined using a quantitative accelerated ageing method. In order to examine the ageing features, a novel method based on conditional probability was developed, and the reliability of HA-Mont immobilization was found to fit the Weibull model well, as the ageing rate of immobilization effect increased with time. After 120 years of ageing, reliability of both metals could still remain above 0.95. Cd concentration in TCLP leachates at 120th year could still remain below the regulatory limit (294 μg/L vs 1000 μg/L), while Hg concentration reached the regulatory limit of 200 μg/L in 96th year. This is the first attempt developing a green S/S method of Cd and Hg contaminated soil using HA-Mont and examining the long-term ageing characteristics of the stabilized soil using a probability-based approach

    Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts : A critical review

    Get PDF
    The distinct physicochemical properties and renewable origin of gamma-valerolactone (GVL) have provided opportunities for diversifying its applications, particularly as a green solvent, excellent fuel additive, and precursor to valuable chemicals. Among the related publications found in the SCOPUS database (≈172 in the last 10 years), we focused our effort to review the conversion of levulinic acid (LA) to GVL over non-noble metal catalysts and the corresponding mechanisms (≈30 publications) as well as the applications of GVL as a solvent, fuel additive, and platform chemical (≈30 publications) mostly in the last five years (some preceding publications have also been included due to their relevance and importance in the field). The use of non-noble metals (e.g., Cu and Zr) presents a greener route of GVL synthesis than the conventional practice employing noble metals (e.g., Pd and Ru), in view of their higher abundance and milder reaction conditions needed (e.g., low pressure and temperature without H 2 involved). The significance of the catalyst characteristics in promoting catalytic transfer hydrogenation of LA to GVL is critically discussed. Structural features and acid-base properties are found to influence the activity and selectivity of catalysts. Furthermore, metal leaching in the presence of water in catalytic systems is an important issue, resulting in catalyst deactivation. Various endeavors for developing catalysts using well-dispersed metal particles along with a combination of Lewis acid and base sites are suggested for efficiently synthesizing GVL from LA

    A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications

    Get PDF
    A large amount of plastic waste released into natural waters and their demonstrated toxicity have made the transformation of microplastics (MPs; < 5 mm) and nanoplastics (NPs; < 100 nm) an emerging environmental concern. Aggregation is one of the most important environmental behaviors of MPs, especially in aquatic environments, which determines the mobility, distribution and bioavailability of MPs. In this paper, the sources and inputs of MPs in aquatic environments were first summarized followed by the analytical methods for investigating MP aggregation, including the sampling, visualization, and quantification procedures of MP’ particle sizes. We critically evaluated the sampling methods that still remains a methodological gap. Identification and quantification of MPs were mostly carried out by visual, spectroscopic and spectrometric techniques, and modeling analysis. Important factors affecting MP aggregation in natural waters and environmental implications of the aggregation process were also reviewed. Finally, recommendations for future research were discussed, including (1) conducting more field studies; (2) using MPs in laboratory works representing those in the environment; and (3) standardizing methods of identification and quantification. The review gives a comprehensive overview of current knowledge for MP aggregation in natural waters, identifies knowledge gaps, and provides suggestions for future research

    A sustainable biochar catalyst synergized with copper heteroatoms and CO2 for singlet oxygenation and electron transfer routes

    Get PDF
    We have developed a wood waste-derived biochar as a sustainable graphitic carbon catalyst for environmental remediation through catalytic pyrolysis under the synergistic effects between Cu heteroatoms and CO2, which for the first time are found to significantly enhance the oxygen functionalities, defective sites, and highly ordered sp2-hybridized carbon matrix. The copper-doped graphitic biochars (Cu-GBCs) were further characterized by XRD, FTIR, Raman, XPS, etc., revealing that the modified specific surface area, pore structure, graphitization, and active sites (i.e., defective sites and ketonic group) on the Cu-GBCs corresponded to the synergistic Cu species loading and Cu-induced carbon-matrix reformation in CO2 environment during pyrolysis. The catalytic ability of Cu-GBCs was evaluated using the ubiquitous peroxydisulfate (PDS) activation system for the removal of various organic contaminants (i.e., rhodamine B, phenol, bisphenol A, and 4-chlorophenol), and gave the highest degradation rate of 0.0312 min-1 in comparison with those of pristine GBCs and N2-pyrolyzed Cu-GBCs ranging from 0.0056 to 0.0094 min-1. The synergistic effects were attributed to the encapsulated Cu heteroatoms, evolved ketonic groups, and abundant unconfined π electrons within the carbon lattice. According to scavenger experiments, ESR analysis, and two-chamber experiments, selective and sustainable non-radical pathways (i.e., singlet oxygenation and electron transfer) mediated by the Cu-induced metastable surface complex were achieved in the Cu-GBC/PDS system. This study offers the first insights into the efficacy, sustainability, and mechanistic roles of Cu-GBCs as an emerging carbon-based catalyst for green environmental remediation

    Effects of excessive impregnation, magnesium content, and pyrolysis temperature on MgO-coated watermelon rind biochar and its lead removal capacity

    Get PDF
    MgO-coated watermelon rind biochar (MWRB) is a potentially highly-effective waste-derived material in environmental applications. This research aims to provide valuable insights into the optimization of the production of MWRB for superior environmental performance. It was found that the Mg content of the MWRB could be easily controlled by adjusting the Mg/feedstock mass ratio during excessive impregnation. The BET surface area was found to first increase and then decrease as the Mg content of the MWRB (produced at 600 °C) increased from 1.52% to 10.1%, with an optimal surface area of 293 m2/g observed at 2.51%. Similarly, an optimum pyrolysis temperature of 600 °C was observed in the range of 400–800 °C for a maximum surface area of the MWRB at a fixed Mg/feedstock ratio of 0.48% (resulting in MWRBs with Mg contents of 1.89–2.51%). The Pb removal capacity of the MWRB (produced at 600 °C) increased with increasing Mg content, with a greatest Pb removal capacity of 558 mg/g found for the MWRB with the highest Mg content (10.1%), an improvement of 208% over the 181 mg/g Pb removal capacity of unmodified WRB produced at 600 °C. The Pb removal capacity of the MWRB (produced with 1.89–2.51% Mg) was also discovered to increase from 81.7 mg/g (at 400 °C) to 742 mg/g (at 700 °C), before dropping to 368 mg/g at 800 °C. These findings suggest that the MWRB can be more efficiently utilized in soil and water remediation by optimizing its synthesis conditions
    corecore