8 research outputs found

    Protein Kinase C-ζ and Protein Kinase B Regulate Distinct Steps of Insulin Endocytosis and Intracellular Sorting

    Get PDF
    We have investigated the molecular mechanisms regulating insulin internalization and intracellular sorting. Insulin internalization was decreased by 50% upon incubation of the cells with the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002. PI3K inhibition also reduced insulin degradation and intact insulin release by 50 and 75%, respectively. Insulin internalization was reduced by antisense inhibition of protein kinase C-zeta (PKCzeta) expression and by overexpression of a dominant negative PKCzeta mutant (DN-PKCzeta). Conversely, overexpression of PKCzeta increased insulin internalization as a function of the PKCzeta levels achieved in the cells. Expression of wild-type protein kinase B (PKB)-alpha or of a constitutively active form (myr-PKB) did not significantly alter insulin internalization and degradation but produced a 100% increase of intact insulin release. Inhibition of PKB by a dominant negative mutant (DN-PKB) or by the pharmacological inhibitor ML-9 reduced intact insulin release by 75% with no effect on internalization and degradation. In addition, overexpression of Rab5 completely rescued the effect of PKCzeta inhibition on insulin internalization but not that of PKB inhibition on intact insulin recycling. Indeed, PKCzeta bound to and activated Rab5. Thus, PI3K controls different steps within the insulin endocytic itinerary. PKCzeta appears to mediate the PI3K effect on insulin internalization in a Rab5-dependent manner, whereas PKB directs intracellular sorting toward intact insulin release

    Multiple members of the mitogen-activated protein kinase family are necessary for PED/PEA-15 anti-apoptotic function.

    Get PDF
    293 kidney embryonic cells feature very low levels of the anti-apoptotic protein PED. In these cells, expression of PED to levels comparable with those occurring in normal adult cells inhibits apoptosis induced by growth factor deprivation and by exposure to H(2)O(2) or anisomycin. In PED-expressing 293 cells (293(PED)), inhibition of apoptosis upon growth factor deprivation was paralleled by decreased phosphorylation of JNK1/2. In 293(PED) cells, decreased apoptosis induced by anisomycin and H(2)O(2) was also accompanied by block of JNK1/2 and p38 phosphorylations, respectively. Impaired activity of these stress kinases by PED correlated with inhibition of stress-induced Cdc-42, MKK4, and MKK6 activation. At variance with JNK1/2 and p38, PED expression increased basal and growth factor-stimulated Ras-Raf-1 co-precipitation and MAPK phosphorylation and activity. Treatment of 293(PED) cells with the MEK inhibitor PD98059 blocked ERK1/2 phosphorylations with no effect on inhibition of JNK1/2 and p38 activities. Complete rescue of JNK and p38 functions in 293(PED) cells by overexpressing JNK1 or p38, respectively, enabled only partial recovery of apoptotic response to growth factor deprivation and anisomycin. However, simultaneous rescue of JNK and p38 activities accompanied by block of ERK1/2 fully restored these responses. Thus, PED controls activity of the ERK, JNK, and p38 subfamilies of MAPKs. PED anti-apoptotic function in the 293 cells requires PED simultaneous activation of ERK1/2 and inhibition of the JNK/p38 signaling systems by PED

    Omi/HtrA2 promotes cell death by binding and degrading the anti-apoptotic protein ped/pea-15

    Get PDF
    ped/pea-15 is a ubiquitously expressed 15-kDa protein featuring a broad anti-apoptotic function. In a yeast two-hybrid screen, the pro-apoptotic Omi/HtrA2 mitochondrial serine protease was identified as a specific interactor of the ped/pea-15 death effector domain. Omi/HtrA2 also bound recombinant ped/pea-15 in vitro and co-precipitated with ped/pea-15 in 293 and HeLa cell extracts. In these cells, the binding of Omi/HtrA2 to ped/pea-15 was induced by UVC exposure and followed the mitochondrial release of Omi/HtrA2 into the cytoplasm. Upon UVC exposure, cellular ped/pea-15 protein expression levels decreased. This effect was prevented by the ucf-101 specific inhibitor of the Omi/HtrA2 proteolytic activity, in a dose-dependent fashion. In vitro incubation of ped/pea-15 with Omi/HtrA2 resulted in ped/pea-15 degradation. In intact cells, the inhibitory action of ped/pea-15 on UVC-induced apoptosis progressively declined at increasing Omi/HtrA2 expression. This further effect of Omi/HtrA2 was also inhibited by ucf-101. In addition, ped/pea-15 expression blocked Omi/HtrA2 co-precipitation with the caspase inhibitor protein XIAP and caspase 3 activation. Thus, in part, apoptosis following Omi/HtrA2 mitochondrial release is mediated by reduction in ped/pea-15 cellular levels. The ability of Omi/HtrA2 to relieve XIAP inhibition on caspases is modulated by the relative levels of Omi/HtrA2 and ped/pea-15

    Omi/HtrA2 promotes cell death by binding and degrading the anti-apoptotic protein ped/pea-15

    Get PDF
    ped/pea-15 is a ubiquitously expressed 15-kDa protein featuring a broad anti-apoptotic function. In a yeast two-hybrid screen, the pro-apoptotic Omi/HtrA2 mitochondrial serine protease was identified as a specific interactor of the ped/pea-15 death effector domain. Omi/HtrA2 also bound recombinant ped/pea-15 in vitro and co-precipitated with ped/pea-15 in 293 and HeLa cell extracts. In these cells, the binding of Omi/HtrA2 to ped/pea-15 was induced by UVC exposure and followed the mitochondrial release of Omi/HtrA2 into the cytoplasm. Upon UVC exposure, cellular ped/pea-15 protein expression levels decreased. This effect was prevented by the ucf-101 specific inhibitor of the Omi/HtrA2 proteolytic activity, in a dose-dependent fashion. In vitro incubation of ped/pea-15 with Omi/HtrA2 resulted in ped/pea-15 degradation. In intact cells, the inhibitory action of ped/pea-15 on UVC-induced apoptosis progressively declined at increasing Omi/HtrA2 expression. This further effect of Omi/HtrA2 was also inhibited by ucf-101. In addition, ped/pea-15 expression blocked Omi/HtrA2 co-precipitation with the caspase inhibitor protein XIAP and caspase 3 activation. Thus, in part, apoptosis following Omi/HtrA2 mitochondrial release is mediated by reduction in ped/pea-15 cellular levels. The ability of Omi/HtrA2 to relieve XIAP inhibition on caspases is modulated by the relative levels of Omi/HtrA2 and ped/pea-15

    Insulin Receptor Substrate-2 Phosphorylation Is Necessary for Protein Kinase Cζ Activation by Insulin in L6hIR Cells

    No full text
    We have investigated glycogen synthase (GS) activation in L6hIR cells expressing a peptide corresponding to the kinase regulatory loop binding domain of insulin receptor substrate-2 (IRS-2) (KRLB). In several clones of these cells (B2, F4), insulin-dependent binding of the KRLB to insulin receptors was accompanied by a block of IRS-2, but not IRS-1, phosphorylation, and insulin receptor binding. GS activation by insulin was also inhibited by >70% in these cells (p 80% (p < 0.001) and prevented full GSK3 inactivation by insulin. Thus, IRS-2, not IRS-1, signals insulin activation of GS in the L6hIR skeletal muscle cells. In these cells, insulin inhibition of GSK3 alpha and -beta requires dual phosphorylation by both Akt/PKB and PKC zeta

    Protein Kinase B/Akt Binds and Phosphorylates PED/PEA-15, Stabilizing Its Antiapoptotic Action

    No full text
    The antiapoptotic protein PED/PEA-15 features an Akt phosphorylation motif upstream from Ser(116). In vitro, recombinant PED/PEA-15 was phosphorylated by Akt with a stoichiometry close to 1. Based on Western blotting with specific phospho-Ser(116) PED/PEA-15 antibodies, Akt phosphorylation of PED/PEA-15 occurred mainly at Ser(116). In addition, a mutant of PED/PEA-15 featuring the substitution of Ser(116)→Gly (PED(S116→G)) showed 10-fold-decreased phosphorylation by Akt. In intact 293 cells, Akt also induced phosphorylation of PED/PEA-15 at Ser(116). Based on pull-down and coprecipitation assays, PED/PEA-15 specifically bound Akt, independently of Akt activity. Serum activation of Akt as well as BAD phosphorylation by Akt showed no difference in 293 cells transfected with PED/PEA-15 and in untransfected cells (which express no endogenous PED/PEA-15). However, the antiapoptotic action of PED/PEA-15 was almost twofold reduced in PED(S116→G) compared to that in PED/PEA-15(WT) cells. PED/PEA-15 stability closely paralleled Akt activation by serum in 293 cells. In these cells, the nonphosphorylatable PED(S116→G) mutant exhibited a degradation rate threefold greater than that observed with wild-type PED/PEA-15. In the U373MG glioma cells, blocking Akt also reduced PED/PEA-15 levels and induced sensitivity to tumor necrosis factor-related apoptosis-inducing ligand apoptosis. Thus, phosphorylation by Akt regulates the antiapoptotic function of PED/PEA-15 at least in part by controlling the stability of PED/PEA-15. In part, Akt survival signaling may be mediated by PED/PEA-15.
    corecore