333 research outputs found
Investigating RFC1 expansions in sporadic amyotrophic lateral sclerosis
A homozygous AAGGG repeat expansion within the RFC1 gene was recently described as a common cause of CANVAS syndrome. We examined 1069 sporadic ALS patients for the presence of this repeat expansion. We did not discover any carriers of the homozygous AAGGG expansion in our ALS cohort, indicating that this form of RFC1 repeat expansions is not a common cause of sporadic ALS. However, our study did identify a novel repeat conformation and further expanded on the highly polymorphic nature of the RFC1 locus
Age-related penetrance of the C9orf72 repeat expansion
A pathogenic hexanucleotide repeat expansion within the C9orf72 gene has been identified as the major cause of two neurodegenerative syndromes, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This mutation is known to have incomplete penetrance, with some patients developing disease in their twenties and a small portion of carriers surviving to their ninth decade without developing symptoms. Describing penetrance by age among C9orf72 carriers and identifying parameters that alter onset age are essential to better understanding this locus and to enhance predictive counseling. To do so, data from 1,170 individuals were used to model penetrance. Our analysis showed that the penetrance was incomplete and age-dependent. Additionally, familial and sporadic penetrance did not significantly differ from one another; ALS cases exhibited earlier age of onset than FTD cases; and individuals with spinal-onset exhibited earlier age of onset than those with bulbar-onset. The older age of onset among female cases in general, and among female bulbar-onset cases in particular, was the most striking finding, and there may be an environmental, lifestyle, or hormonal factor that is influencing these penetrance patterns. These results will have important applications for future clinical research, the identification of disease modifiers, and genetic counseling
TDP-43 Is Not a Common Cause of Sporadic Amyotrophic Lateral Sclerosis
Background: TAR DNA binding protein, encoded by TARDBP, was shown to be a central component of ubiquitin-positive, tau-negative inclusions in frontotemporal lobar degeneration (FTLD-U) and amyotrophic lateral sclerosis (ALS). Recently, mutations in TARDBP have been linked to familial and sporadic ALS.Methodology/Principal Findings: To further examine the frequency of mutations in TARDBP in sporadic ALS, 279 ALS cases and 806 neurologically normal control individuals of European descent were screened for sequence variants, copy number variants, genetic and haplotype association with disease. An additional 173 African samples from the Human Gene Diversity Panel were sequenced as this population had the highest likelihood of finding changes. No mutations were found in the ALS cases. Several genetic variants were identified in controls, which were considered as non-pathogenic changes. Furthermore, pathogenic structural variants were not observed in the cases and there was no genetic or haplotype association with disease status across the TARDBP locus.Conclusions: Our data indicate that genetic variation in TARDBP is not a common cause of sporadic ALS in North American
Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types
Despite the considerable progress in unraveling the genetic causes of amyotrophic lateral sclerosis (ALS), we do not fully understand the molecular mechanisms underlying the disease. We analyzed genome-wide data involving 78,500 individuals using a polygenic risk score approach to identify the biological pathways and cell types involved in ALS. This data-driven approach identified multiple aspects of the biology underlying the disease that resolved into broader themes, namely, neuron projection morphogenesis, membrane trafficking, and signal transduction mediated by ribonucleotides. We also found that genomic risk in ALS maps consistently to GABAergic interneurons and oligodendrocytes, as confirmed in human single-nucleus RNA-seq data. Using two-sample Mendelian randomization, we nominated six differentially expressed genes (ATG16L2, ACSL5, MAP1LC3A, MAPKAPK3, PLXNB2, and SCFD1) within the significant pathways as relevant to ALS. We conclude that the disparate genetic etiologies of this fatal neurological disease converge on a smaller number of final common pathways and cell types
Dominant mutations of the Notch ligand Jagged1 cause peripheral neuropathy
Notch signaling is a highly conserved intercellular pathway with tightly regulated and pleiotropic roles in normal tissue development and homeostasis. Dysregulated Notch signaling has also been implicated in human disease, including multiple forms of cancer, and represents an emerging therapeutic target. Successful development of such therapeutics requires a detailed understanding of potential on-target toxicities. Here, we identify autosomal dominant mutations of the canonical Notch ligand Jagged1 (or JAG1) as a cause of peripheral nerve disease in 2 unrelated families with the hereditary axonal neuropathy Charcot-Marie-Tooth disease type 2 (CMT2). Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Our studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Together, our findings highlight a critical role for JAG1 in maintaining peripheral nerve integrity, particularly in the recurrent laryngeal nerve, and provide a basis for the evaluation of peripheral neuropathy as part of the clinical development of Notch pathway–modulating therapeutics
The Heritability of Amyotrophic Lateral Sclerosis in a Clinically Ascertained United States Research Registry
The genetic basis of amyotrophic lateral sclerosis (ALS) is not entirely clear. While there are families with rare highly penetrant mutations in Cu/Zn superoxide dismutase 1 and several other genes that cause apparent Mendelian inheritance of the disease, most ALS occurs in families without another affected individual. However, twin studies suggest that all ALS has a substantial genetic basis. Herein, we estimate the genetic contribution to ALS in a clinically ascertained case series from the United States.We used the database of the Emory ALS Center to ascertain individuals with ALS along with their family histories to determine the concordance among parents and offspring for the disease. We found that concordance for all parent-offspring pairs was low (<2%). With this concordance we found that ALS heritability, or the proportion of the disease explained by genetic factors, is between 40 and 45% for all likely estimates of ALS lifetime prevalence.We found the lifetime risk of ALS is 1.1% in first-degree relatives of those with ALS. Environmental and genetic factors appear nearly equally important for the development of ALS
Aspergillus antigen induces robust Th2 cytokine production, inflammation, airway hyperreactivity and fibrosis in the absence of MCP-1 or CCR2
BACKGROUND: Asthma is characterized by type 2 T-helper cell (Th2) inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma. METHODS: To test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response. RESULTS: We found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines. CONCLUSION: We conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2
- …