4 research outputs found

    Synthesis and evaluation of an inorganic microsphere composite for the selective removal of {esc}p137{esc}scesium from acidic nuclear waste solutions /by Troy J. Tranter.

    No full text
    This work describes the results of a multi-year research and development effort to produce an inorganic ion exchange material for removing {esc}p137{esc}s Cs from acidic nuclear waste solutions. Various quantities of this waste exist throughout the United States, France, and Russia as a legacy of decades of nuclear fuel reprocessing and nuclear weapons production. For example, the Idaho National Laboratory (INL) currently stores about 900,000 gallons of acidic, high-level radioactive waste stemming from the various solvent decontamination processes associated with the reprocessing of naval reactor fuel assemblies. Internationally, the planned disposition path for these waste streams is solidification followed by storage in a geological repository. Since {esc}p137{esc}s Cs is a primary contributor to heat load and radiological dose, most treatment schemes involve removing this isotope from the bulk waste in order to facilitate handling and storage. However, since these liquid waste streams are highly acidic and ionic, they become problematic for any type of separation process. Consequently, an adsorbent or ion exchange material designed for use with these waste streams must be unique, having exceptional selectivity and stability in high radiation, temperature, and acid environments.;As result of this research effort, a new inorganic ion exchange composite consisting of ammonium molybdophosphate, (NH{esc}b4{esc}s){esc}b3{esc}sP(Mo{esc}b3{esc}sO{esc}b10{esc}s){esc}b4{esc}s*3H{esc}b2{esc}sO(AMP), synthesized within hollow aluminosilicate microspheres (AMP-C) has been produced. The selective cesium exchange capacity of this inorganic composite was evaluated using simulated sodium bearing waste solution as a surrogate for the tank waste currently stored at the INL. Equilibrium isotherms obtained from these experiments were very favorable for cesium uptake and indicated maximum cesium loading of approximately 9 % by weight of dry AMP. Column tests were performed using bench-scale columns and complete breakthrough curves were obtained from these tests. The dynamic capacity of the columns was determined to be approximately 2.5 g Cs/kg exchanger (18.8 millimole/kg) for the feed concentrations of interest.Thesis (Ph. D., Chemical Engineering)--University of Idaho, May 2006

    System Design Description and Requirements for Modeling the Off-Gas Systems for Fuel Recycling Facilities

    No full text
    This document provides descriptions of the off-gases evolved during spent nuclear fuel processing and the systems used to capture the gases of concern. Two reprocessing techniques are discussed, namely aqueous separations and electrochemical (pyrochemical) processing. The unit operations associated with each process are described in enough detail so that computer models to mimic their behavior can be developed. The document also lists the general requirements for the desired computer models
    corecore