21 research outputs found

    Leukotriene A4 Hydrolase Genotype and HIV Infection Influence Intracerebral Inflammation and Survival From Tuberculous Meningitis.

    Get PDF
    BACKGROUND: Tuberculous meningitis (TBM) is the most devastating form of tuberculosis, yet very little is known about the pathophysiology. We hypothesized that the genotype of leukotriene A4 hydrolase (encoded by LTA4H), which determines inflammatory eicosanoid expression, influences intracerebral inflammation, and predicts survival from TBM. METHODS: We characterized the pretreatment clinical and intracerebral inflammatory phenotype and 9-month survival of 764 adults with TBM. All were genotyped for single-nucleotide polymorphism rs17525495, and inflammatory phenotype was defined by cerebrospinal fluid (CSF) leukocyte and cytokine concentrations. RESULTS: LTA4H genotype predicted survival of human immunodeficiency virus (HIV)-uninfected patients, with TT-genotype patients significantly more likely to survive TBM than CC-genotype patients, according to Cox regression analysis (univariate P = .040 and multivariable P = .037). HIV-uninfected, TT-genotype patients had high CSF proinflammatory cytokine concentrations, with intermediate and lower concentrations in those with CT and CC genotypes. Increased CSF cytokine concentrations correlated with more-severe disease, but patients with low CSF leukocytes and cytokine concentrations were more likely to die from TBM. HIV infection independently predicted death due to TBM (hazard ratio, 3.94; 95% confidence interval, 2.79-5.56) and was associated with globally increased CSF cytokine concentrations, independent of LTA4H genotype. CONCLUSIONS: LTA4H genotype and HIV infection influence pretreatment inflammatory phenotype and survival from TBM. LTA4H genotype may predict adjunctive corticosteroid responsiveness in HIV-uninfected individuals

    Molecular Characterization of HIV-1 CRF01_AE in Mekong Delta, Vietnam, and Impact of T-Cell Epitope Mutations on HLA Recognition (ANRS 12159)

    Get PDF
    To date, 11 HIV-1 subtypes and 48 circulating recombinant forms have been described worldwide. The underlying reason why their distribution is so heterogeneous is not clear. Host genetic factors could partly explain this distribution. The aim of this study was to describe HIV-1 strains circulating in an unexplored area of Mekong Delta, Vietnam, and to assess the impact of optimal epitope mutations on HLA binding.We recruited 125 chronically antiretroviral-naive HIV-1-infected subjects from five cities in the Mekong Delta. We performed high-resolution DNA typing of HLA class I alleles, sequencing of Gag and RT-Prot genes and phylogenetic analysis of the strains. Epitope mutations were analyzed in patients bearing the HLA allele restricting the studied epitope. Optimal wild-type epitopes from the Los Alamos database were used as reference. T-cell epitope recognition was predicted using the immune epitope database tool according to three different scores involved in antigen processing (TAP and proteasome scores) and HLA binding (MHC score). with a Vietnamese specificity held by two different haplotypes. The percentage of homology between Mekong and B consensus HIV-1 sequences was above 85%. Divergent epitopes had TAP and proteasome scores comparable with wild-type epitopes. MHC scores were significantly lower in divergent epitopes with a mean of 2.4 (±0.9) versus 2 (±0.7) in non-divergent ones (p<0.0001).Our study confirms the wide predominance of CRF01_AE in the Mekong Delta where patients harbor a specific HLA pattern. Moreover, it demonstrates the lower MHC binding affinity among divergent epitopes. This weak immune pressure combined with a narrow genetic diversity favors immune escape and could explain why CRF01_AE is still predominant in Vietnam, particularly in the Mekong area

    An evaluation of dried blood spots and oral swabs as alternative specimens for the diagnosis of dengue and screening for past dengue virus exposure.

    No full text
    Non-invasive specimens for dengue diagnosis may be preferable where venous blood is difficult to collect and/or process, such as community-based or remote settings or when sampling from young children. We evaluated the performance of oral swabs and dried blood spots (DBS), compared with plasma, in diagnosing acute dengue and screening for past dengue virus (DENV) exposure. DENV-specific immunoglobulin (Ig) M, IgG, and NS1 antigen were detected both in oral swabs and DBS from acute patients. Oral swabs were less sensitive (IgM: 68.7%, IgG: 91.9%, NS1: 64.7%), but retained good specificity (100%, 92.3%, 95.8%, respectively) compared with plasma. DBS displayed high sensitivity (IgM: 100%, IgG: 96%, NS1: 100%) and specificity (IgM: 75%, IgG: 93%). DENV RNA was amplified from DBS (sensitivity 95.6%) but not from oral swabs. DENV-IgG (indicative of past flavivirus exposure) were detected with moderate sensitivity (61.1%) but poor specificity (50%) in oral swabs from healthy volunteers. Dried blood spots allow sensitive and specific diagnosis of acute dengue by serological, molecular, and antigen detection methods. Oral swabs may be an adequate alternative where blood cannot be collected

    Development of ligand‐coated beads to measure macrophage antimicrobial activities

    No full text
    Background Information: After macrophage recognises and phagocytoses the microorganism, their phagosome undergoes a maturation process, which creates a hostile environment for the bacterium. The lumen is acidified, and proteolysis occurs to kill and degrade pathogen for further antigen presentation. It is important to understand the association between the macrophage intracellular activities and the outcome of infection. Different methods have been developed to measure the phagosome dynamics of macrophages, but there are still limitations. Results: We used Mycobacterium tuberculosis (Mtb ) antigens, the causative agent of tuberculosis (TB), as a model of infectious disease. Adopting a fluorescent bead‐based assay, we developed beads coated with trehalose 6,6′dimycolate (TDM) from Mtb cell wall and β‐glucan from yeast cell wall to measure the macrophage phagosomal activities using a microplate reader. We examined the consistency of the assay using J774 cells and validated it using human monocyte‐derived macrophages (hMDM) from healthy volunteers and TB patients. There was a decreased pH and increased proteolysis in the lumen of J774 cells after phagocytosing the ligand‐coated beads. J774 macrophage showed no difference in the acidification and proteolysis in response to control IgG beads, TDM and β‐glucan beads. hMDM from healthy volunteers or TB patients showed heterogeneity in the intracellular activities when treated with ligand‐coated beads. Conclusions and Significance: The beads coated with specific ligands from Mtb worked well in both macrophage cell line and human primary macrophages, which can be exploited to further study the phagosomal function of macrophage in TB. Our bead model can be applied to different ligands from other pathogens, which could extend the understanding of the associations between macrophage antimicrobial functions and outcomes of infectious diseases and the possible cellular mechanisms involved

    Avaliação do desempenho de um reator anaeróbio de fluxo vertical com separação de fases no tratamento de manipueira / Evaluation of the performance of a vertical flow anaerobic reactor with phase separation in treatment of cassava wastewater

    No full text
    O presente trabalho teve por objetivo analisar a eficiência do tratamento da manipueira em um reator anaeróbio de duas fases com volume útil de 8 L em cada fase, onde o mesmo foi operado com vazão de 2 L.dia-1 e TDH de 8 dias. Foram analisados os parâmetros físico-químicos: temperatura, pH, ácidos voláteis, alcalinidade total, demanda química de oxigênio (DQO), nitrogênio total kjeldahl (NTK), sólidos voláteis e turbidez. Os resultados obtidos indicaram que o sistema de tratamento apresentou uma redução de aproximadamente 90% nos valores de turbidez, 60%, 40% e 40% de eficiência de remoção de sólidos voláteis, DQO e NTK, respectivamente. Dessa forma, o reator anaeróbio de fluxo vertical com separação das fases, se mostrou com grande potencial para o tratamento da manipueira, podendo ter sua eficiência aumentada com a utilização de dosagens de alcalinizantes para neutralizar a acidez natural da manipueira, principalmente durante a partida do reator, a fim de evitar a acidificação do efluente e redução da eficiência do biorreator.

    Genome-wide association study identifies susceptibility loci for dengue shock syndrome at MICB and PLCE1

    No full text
    Hypovolemic shock (dengue shock syndrome (DSS)) is the most common life-threatening complication of dengue. We conducted a genome-wide association study of 2,008 pediatric cases treated for DSS and 2,018 controls from Vietnam. Replication of the most significantly associated markers was carried out in an independent Vietnamese sample of 1,737 cases and 2,934 controls. SNPs at two loci showed genome-wide significant association with DSS. We identified a susceptibility locus at MICB (major histocompatibility complex (MHC) class I polypeptide-related sequence B), which was within the broad MHC region on chromosome 6 but outside the class I and class II HLA loci (rs3132468, Pmeta = 4.41 × 10−11, per-allele odds ratio (OR) = 1.34 (95% confidence interval: 1.23–1.46)). We identified associated variants within PLCE1 (phospholipase C, epsilon 1) on chromosome 10 (rs3765524, Pmeta = 3.08 × 10−10, per-allele OR = 0.80 (95% confidence interval: 0.75–0.86)). We identify two loci associated with susceptibility to DSS in people with dengue, suggesting possible mechanisms for this severe complication of dengue. </p

    Variation at HLA-DRB1 is associated with resistance to enteric fever.

    No full text
    Enteric fever affects more than 25 million people annually and results from systemic infection with Salmonella enterica serovar Typhi or Paratyphi pathovars A, B or C(1). We conducted a genome-wide association study of 432 individuals with blood culture-confirmed enteric fever and 2,011 controls from Vietnam. We observed strong association at rs7765379 (odds ratio (OR) for the minor allele = 0.18, P = 4.5 × 10(-10)), a marker mapping to the HLA class II region, in proximity to HLA-DQB1 and HLA-DRB1. We replicated this association in 595 enteric fever cases and 386 controls from Nepal and also in a second independent collection of 151 cases and 668 controls from Vietnam. Imputation-based fine-mapping across the extended MHC region showed that the classical HLA-DRB1*04:05 allele (OR = 0.14, P = 2.60 × 10(-11)) could entirely explain the association at rs7765379, thus implicating HLA-DRB1 as a major contributor to resistance against enteric fever, presumably through antigen presentation

    Highly secreted tryptophanyl tRNA synthetase 1 as a potential theranostic target for hypercytokinemic severe sepsis

    No full text
    Abstract Despite intensive clinical and scientific efforts, the mortality rate of sepsis remains high due to the lack of precise biomarkers for patient stratification and therapeutic guidance. Secreted human tryptophanyl-tRNA synthetase 1 (WARS1), an endogenous ligand for Toll-like receptor (TLR) 2 and TLR4 against infection, activates the genes that signify the hyperinflammatory sepsis phenotype. High plasma WARS1 levels stratified the early death of critically ill patients with sepsis, along with elevated levels of cytokines, chemokines, and lactate, as well as increased numbers of absolute neutrophils and monocytes, and higher Sequential Organ Failure Assessment (SOFA) scores. These symptoms were recapitulated in severely ill septic mice with hypercytokinemia. Further, injection of WARS1 into mildly septic mice worsened morbidity and mortality. We created an anti-human WARS1-neutralizing antibody that suppresses proinflammatory cytokine expression in marmosets with endotoxemia. Administration of this antibody into severe septic mice attenuated cytokine storm, organ failure, and early mortality. With antibiotics, the antibody almost completely prevented fatalities. These data imply that blood-circulating WARS1-guided anti-WARS1 therapy may provide a novel theranostic strategy for life-threatening systemic hyperinflammatory sepsis

    MUC5AC genetic variation is associated with tuberculous meningitis CSF cytokine responses and mortality

    No full text
    BACKGROUND: The purpose of this study was to assess if single nucleotide polymorphisms (SNPs) in lung mucins MUC5B and MUC5AC are associated with Mycobacterium tuberculosis outcomes. METHODS: Independent SNPs in MUC5B and MUC5AC (genotyped by Illumina HumanOmniExpress array) were assessed for associations with TNF concentrations (measured by immunoassay) in cerebral spinal fluid (CSF) from tuberculous meningitis (TBM) patients. SNPs associated with CSF TNF concentrations were carried forward for analyses of pulmonary and meningeal tuberculosis susceptibility and TBM mortality. RESULTS: MUC5AC SNP rs28737416 T allele was associated with lower CSF concentrations of TNF(p = 1.8*10-8) and IFNγ(p = 2.3*10-6). In an additive genetic model, rs28737416 T/T genotype was associated with higher susceptibility to TBM (odds ratio [OR] 1.24, 95% confidence interval [CI] 1.03, 1.49; p = 0.02), but not pulmonary tuberculosis (OR 1.11, 95% CI 0.98, 1.25; p = 0.10). TBM mortality was higher among participants with the rs28737416 T/T and T/C genotypes (35/119, 30.4%) versus the C/C genotype (11/89, 12.4%; log-rank p = 0.005) in a Vietnam discovery cohort (N = 210), an independent Vietnam validation cohort (N = 87; 9/87, 19.1% vs 1/20, 2.5%; log-rank p = 0.02), and an Indonesia validation cohort (N = 468, 127/287, 44.3% vs 65/181, 35.9%, log-rank p = 0.06). CONCLUSIONS: MUC5AC variants may contribute to immune changes that influence TBM outcomes
    corecore